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Subgraph Frequencies

* Definition: The subgraph frequency s(F,G) of a k-node subgraph Fina graph G
is the fraction of k-tuples of nodes in G that induce a copy of F.

Triad census: Davis-Leinhardt 1971, Wasserman-Faust 1994
Motifs/Frequent subgraphs: Inokuchi et al. 2000, Milo et al. 2002, Yan-Han 2002, Kuramochi-Karypis 2004
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Empirical/Extremal Questions

* Consider the subgraph frequencies as a ‘coordinate system’

* Empirical Geography:

* What subgraph frequencies do social graphs exhibit?

" Isthere a good model?

* Extremal Geography:
- How much of this space is even feasible, combinatorially?

- Do empirical graphs fill the feasible space?



Empirical/Extremal Questions

* Consider the subgraph frequencies as a ‘coordinate system’
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* What subgrap

N frequencies do social graphs exhibit?
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model?

* Extremal Geography:

- How much of this space is even feasible, combinatorially?

- Do empirical graphs fill the feasible space?

- What’s a property of graphs and what’s a property of people?



What do we expect?
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What do we expect?

We expect few wedges, many triangles for social networks.
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The triad space

-
e
-
- .
Seg
-~
3
- -
.-
-~ .
=

- -9
°‘.'00"

--
98w
--
-
-
.....
-n-
--
-
--
-




The triad space

1.0

Yoo
.-
e
e
.-
®e
.....
- -
®e
-
..
e
- -

-
-

e

0.0

You are here

50 node graphs

Orange -Neighborhoods
Green - Groups
Lavender -Events



The triad space

1.0

Yoo
e
®e
See
®e
.....
- -
®e
-
..
e
- .

- -

T

0.0

You are here

50 node graphs

Orange -Neighborhoods
Green - Groups
Lavender -Events



Subgraph frequency of _\

(-
O
T
wn
™~
o
>
-
(-
()
5 WO
o O
= I
} -
[ —
N i
(- .
-
= [}
o
(@

50 node graphs

Orange -Neighborhoods
Green - Groups
Lavender -Events




Subgraph frequency of _\

()
<
To)
N. X1
o
>
E o
S ©
o O
o
(¥
o)
(\! m B
()
o
Q =S
= | | |
0.00 s 0.50 0.75 1.00
D 50 node graphs
Orange -Neighborhoods
Green - Groups

Lavender - Events



Subgraph frequency of _\

()
<
To)
N. X
o
>
c
()
S ©
o O
o
(¥
o)
(\! i
()
o
Q S
o | |
0.00 0.25 0.50 0.75 1.00
D 50 node graphs
Orange -Neighborhoods
Green - Groups

Lavender -Events



Subgraph frequency of _\
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Subgraph frequency of _\

Frequency of the “forbidden triad’ is bounded at < 3/4.
Sharp for Kn2n2 (bipartite graph) when n is even.
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Subgraph frequencies
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‘Crowd-sourced’ inner bounds
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Consider all social graphs and the complements of all graphs, anti-social graphs (which are also graphs!)
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Triadic Closure and Squares
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= Square unlikely to form:
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= Square unlikely to form:
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Triadic Closure and Squares

= Square unlikely to form:

= Square has very short ‘half-life’.
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Continuous Time Markov Chain Model
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Continuous Time Markov Chain Model




Edge Formation Random Walk (EFRW)

= Continuous-time Markov chain
 Transitions between unlabeled, undirected graphs based in edge formation.

* Independent Poisson processes for all node pairs:
o I

o

= Arbitrary deletion: rated>0 I i
" Triadic closure formation for each wedge: rate A2 0 >° 2 1>°

= Arbitrary formation: ratey>0

o
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Fitting Ato subgraph data

" How well can we fit \?

=y Neighborhoods, n=50
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= Subgraph frequencies are modeled very well by triadic closure.




Extremal graph theory

- Subgraph frequencies s(F,G) closely related to homomorphism density t(F,G).
[Borgs et al. 2006, Lovasz 2009]

 Frequency of cliques, lower bounds: Moon-Moser 1962, Razborov 2008
 Frequency of cliques, upper bounds: Kruskal-Katona Theorem

 Frequency of trees: Sidorenko Conjecture (‘Theorem for trees’)
- Also linear relationships across sizes.

= => Linear ProgralmI
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Extremal graph theory

= Aproposition for all subgraphs:

Proposition. For every k, there exist constants € and ng such that the following
holds. If F'is a k-node subgraph that is not a clique and not empty, and G is
any graph on n > ng nodes, then s(F,G) < 1 —e.
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Audience graph classification

- How do different audience graphs differ?
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Audience graph classification

- How do different audience graphs differ?
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Audience graph classification

- How do different audience graphs differ?
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- Features: Quad frequencies: 76% / 76% accuracy
Global features: 69% / 76% accuracy
Quad frequencies + Global features:  81% / 82% accuracy



Conclusions

- Subgraph frequencies usefully characterize social graphs, have extremal limits!

- Edge Formation Random Walk model of dense social graphs:

&

- Homomorphism density bounds yield subgraph density bounds:
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