
Balanced Label Propagation
for Partitioning Massive Graphs

Johan Ugander
Center for Applied Mathematics

Cornell University
Ithaca, NY

jhu5@cornell.edu

Lars Backstrom
Facebook

Menlo Park, CA
lars@fb.com

ABSTRACT
Partitioning graphs at scale is a key challenge for any appli-
cation that involves distributing a graph across disks, ma-
chines, or data centers. Graph partitioning is a very well
studied problem with a rich literature, but existing algo-
rithms typically can not scale to billions of edges, or can not
provide guarantees about partition sizes.

In this work we introduce an efficient algorithm, balanced
label propagation, for precisely partitioning massive graphs
while greedily maximizing edge locality, the number of edges
that are assigned to the same shard of a partition. By com-
bining the computational efficiency of label propagation —
where nodes are iteratively relabeled to the same ‘label’ as
the plurality of their graph neighbors — with the guaran-
tees of constrained optimization — guiding the propagation
by a linear program constraining the partition sizes — our
algorithm makes it practically possible to partition graphs
with billions of edges.

Our algorithm is motivated by the challenge of perform-
ing graph predictions in a distributed system. Because this
requires assigning each node in a graph to a physical ma-
chine with memory limitations, it is critically necessary to
ensure the resulting partition shards do not overload any
single machine.

We evaluate our algorithm for its partitioning performance
on the Facebook social graph, and also study its performance
when partitioning Facebook’s ‘People You May Know’ ser-
vice (PYMK), the distributed system responsible for the fea-
ture extraction and ranking of the friends-of-friends of all
active Facebook users. In a live deployment, we observed
average query times and average network traffic levels that
were 50.5% and 37.1% (respectively) when compared to the
previous naive random sharding.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Discrete Mathematics—
Graph Theory, Graph Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’13, February 4–8, 2013, Rome, Italy.
Copyright 2013 ACM 978-1-4503-1869-3/13/02 ...$15.00.

General Terms
Algorithms, Measurement

Keywords
graph clustering, graph partitioning, label propagation, so-
cial networks

1. INTRODUCTION
In Plato’s Phaedrus, Socrates tells us that a key principle

of rhetoric is the ability to divide ideas “where the natural
joints are, and not trying to break any part, after the man-
ner of a bad carver” [15]. This, too, is the goal of graph
partitioning: breaking a graph at its natural joints.

In this work, we present an algorithm for finding ‘joints’
in graphs of particularly massive proportions, with an em-
phasis on the Facebook social graph consisting of over 800
million nodes and over 68 billion edges [19]. The algorithm
we present uses label propagation to relocate inefficiently
assigned nodes while respecting strict shard balancing con-
straints. We show how this balanced label propagation algo-
rithm can be formulated as a convex optimization problem
that reduces to a manageable linear programming problem.
The algorithm is fundamentally iterative, where each itera-
tion entails solving a linear program.

While we find that our algorithm performs well under
random initialization, by initializing the algorithm with a
greedy geographic assignment, we find that it is possible
to effectively achieve convergence within a single step of the
update algorithm, while random initialization requires many
iterations to slowly converges to a less performative solution.

Our algorithm has the ability to follow arbitrary parti-
tion size specifications, a generalization of the more com-
mon goal of symmetric partitioning [10]. This functionality
makes it possible to use the greedy efficiency of label prop-
agation when considering partitions that are not symmetric
by creation, but might still benefit from label propagation.
Specifically, the geographic initialization we consider is not
symmetric, yet balanced label propagation can still be used
to considerably improve the partitioning.

Label propagation unfortunately offers no formal perfor-
mance guarantees with respect to the graph partitioning
objective, and neither does our modification. It is worth
remarking that the basic problem of constrained graph par-
titioning, bisecting a graph into two equal parts with as few
crossing edges as possible, is the well known NP-hard mini-
mum bisection problem [8], with the best known approxima-
tion algorithm being a O(

√
n logn)-factor approximation [6].

Knowing this, our goal has been to develop a highly scalable

algorithm that can deliver precise partition size guarantees
while performing well at maximizing edge locality in prac-
tice.

People You May Know. After presenting our algo-
rithm and analyzing its performance on both the Facebook
social graph and a LiveJournal graph, we then present the
results of a full deployment of the partitioning scheme for the
Facebook friend recommendation system, ‘People You May
Know’ (PYMK). This system computes, for a given user u,
and each friend-of-friend (FoF) w of u a feature vector xu,w
of graph metrics based on the local structure between u and
w. The system then uses machine learning to rank all the
suggestions w for u, based on the feature vector xu,w, as well
as demographic features of u and w.

Due to the size of the graph and high query volume, Face-
book has built a customized system for performing this task.
Each user u is assigned to a specific machine mu (this as-
signment is what we are optimizing). When a FoF query is
issued for a user u, it must be sent to machine mu. Then,
for each v ∈ N(u), a query must be issued to the machine
mv, to retrieve the nodes two hops from u. The results of
these queries are then aggregated to compute the features
that are input to the machine learning phase, which outputs
the final ranked list of FoFs.

Our goal is to perform our graph sharding such that, as
often as possible, mv = mu for v ∈ N(u). By doing this
well, we can reduce the number of other machines that we
need to query, and also reduce the total amount of data that
needs to be transferred over the network, increasing overall
system throughput and latency. We are constrained by the
fact that machines have a limited amount of memory, which
puts a hard cap on the size of each shard.

At the outset, it is important to note that it is not actu-
ally clear that a sophisticated sharding will be a performance
win in this application. When naively sharding a graph, one
typical approach is to assign nodes to machines by simply
taking the modulus of the user ID; see Figure 1. The ad-
vantage of this approach is that the machine location of a
node is directly encoded in the user ID. Using a non-trivial
sharding requires extensive additional lookups in a shard
map, as well as an additional network operation at the start
of the query where the initial request is forwarded to the
appropriate machine hosting the subject of the query. The
shard map for all 800 million nodes must also be mirrored
in memory across all machines.

As we will see in our ultimate demonstration, the cost of
this additional complexity is greatly overshadowed by the
improvements in locality that can be had. The novel graph
sharding algorithm we introduce, combined with the intelli-
gent initialization based on geographic metadata, is able to
produce a sharding across 78 machines where 75.2% of edges
are local to individual machines. In the conclusion to this
work, we deploy the resulting sharding on Facebook’s ‘Peo-
ple You May Know’ realtime service, and observe dramatic
performance gains in a realtime environment.

The main distinction when designing an algorithm appli-
cable at Facebook’s scale is that the full graph can not be
easily stored in memory. Realistically, this means that the
only admissible algorithms are those that examine the graph
in streaming iterations. One iteration of our balanced label
propagation algorithm takes a single aggregating pass over
the edge list, executable in MapReduce, and then solves a
linear program with complexity dependent on the number

a

b

ID%N == 0 ID%N == 1 ID%N == 2 ID%N == 3

ID%N == N-4 ID%N == N-3 ID%N == N-2 ID%N == N-1

f(ID) == 0 f(ID) == 1 f(ID) == 2 f(ID) == 3

f(ID) == N-4 f(ID) == N-3 f(ID) == N-2 f(ID) == N-1

...

...

Figure 1: Sharding the neighbors of a node across N
machines. (a) Aggregating properties of the neigh-
bors when the edge list is sharded according to node
ID mod N. (b) Aggregating when the edge list is
sharded according to a shardmap f . The goal of an
efficient shard map is to greatly increase the likeli-
hood that a node is located on the same shard as its
neighbors.

of machines, not the size of the graph. A final assignment
step takes a single streaming pass over the nodes, again in
MapReduce, to redefine their assignments. Recent work on
streaming graph partitioning [17] produced notable perfor-
mance using a single greedy iteration, but the results were
obtained within a framework that did not naturally lend
itself to additional iteration.

Organization of the paper. Section 2 presents the de-
tails of the balanced label propagation algorithm. Section
3 discusses a geographic initialization that, when possible,
greatly improves performance. In Section 4, we evaluate
the algorithm and its ability to shard the Facebook social
graph and a publicly availably LiveJournal graph dataset.
In Section 5, we study a deployment of the sharding to
load-balance Facebook’s PYMK service. We conclude with
Section 6 by discussing future directions for work on this
problem.

2. BALANCED LABEL PROPAGATION
Label propagation was first proposed as an efficient method

for learning missing labels for graph data in a semi-supervised
setting [20]. In such a setting, unlabeled nodes iteratively
adopt the label of the plurality of their neighbors until con-
vergence, making it possible to infer a broad range of traits
that are fundamentally assortative along the edges of a graph.

In a context very similar to graph partitioning, label prop-
agation has been found to be a very efficient technique for
network community detection [16], the challenge of finding
naturally dense network clusters in an unlabeled graph [7].
In this context, each node of a graph is initialized with an in-
dividual label, and label propagation is iterated where nodes
again update their labels to the plurality of their neighbor’s
labels.

Network community detection and graph partitioning are
very similar challenges, with two key differences. First, com-
munity detection algorithms need not and should not require
a priori specification of the number or size of graph com-
munities to find. Second, community detection algorithms
ought to support overlapping communities, while graph par-

titions seek explicitly disjoint structure. While some par-
titioning applications may benefit from assigning nodes to
multiple partitions, the Facebook social graph we aim to
partition has a modest maximum degree of 5, 000, and so
we restrict our investigation to creating true partitions.

Label propagation fails to detect overlapping communities
[7], though an adaptation does exist [9]. But this failure of
the ordinary label propagation algorithm in fact makes it
a strong candidate for graph partitioning. The remaining
difficulty is therefore that label propagation provides no way
of constraining the sizes of any of the resulting community
partitions. Our contribution address precisely this difficulty.

A previous attempt to ‘constrain’ label propagation uti-
lizes an optimization framework with a cost penalty to en-
courage balanced partitions [3], but this approach does not
offer constraints in a formal sense. The constraint-based al-
gorithm we introduce in this work offers the possibility of
precisely constraining the size of all the resulting shards – it
is in fact not limited to constraints that produce balanced
partitions. It is also worth noting that the previous cost
penalty approach lacks the computational efficiency of la-
bel propagation, and the largest graph that framework was
originally tested on contained just 120,000 edges.

2.1 Partition constraints
The goal of our balanced label propagation algorithm is to

take a graphG = (V,E) and produce a partition {V1, . . . , Vn}
of V , subject to explicitly defined size constraints. The al-
gorithm is capable of enforcing arbitrary size constraints in
the form of lower bounds Si and upper bounds Ti, such
that Si ≤ |Vi| ≤ Ti, ∀i. These constraints can easily take
the form of balanced constraints, targeting exact balance
Si = b|V |/nc and Ti = d|V |/ne, ∀i, or operating with le-
niency, Si = b(1 − f)|V |/nc and Ti = d(1 + f)|V |/ne, for
some fraction f > 0.

To initialize the algorithm, we begin by randomly assign-
ing nodes to shards, in proportions that are feasible with
respect to these sizing constraints.

2.2 The constrained relocation problem
Given an initial feasible sharding, we wish to maintain the

specified balance of nodes across shards between iterations.
The key challenge is however that some shards will be more
popular than others. In fact, under ordinary label propa-
gation without any balance constraints, labelling all nodes
with the same single label is a trivial equilibrium. Because
we won’t be able to move all nodes, our greedy approach
is to sychronously move those nodes that stand to increase
their colocation count (the number of graph neighbors they
are co-located with) the most.

Given a constraint specification, we now formalize our
greedy relocation strategy as a maximization problem sub-
ject to the above constraints. Consider therefore the nodes
that are assigned to shard i but would prefer to be on shard
j. Order these nodes according to the number of additional
neighbors they would be co-located with if they moved,
from greatest increase to least increase, labeling them k =
1, . . . ,K. Let uij(k) be the change in utility (co-location
count) from moving the kth node from shard i to j.

Let fij(x) =
∑x

k=1 uij(k) be the relocation utility func-
tion between shard i and j, the total utility gained from
moving the leading x nodes from i to j. Observe that be-

1

32

54

S1 � |V1| 
X

i 6=1

(xi1 � x1i)  T1 � |V1|

:population constraint for x12

0  x12  P12

:balance constraint for shard 1

Figure 2: Illustration of the constraints for balanced
label propagation applied to five shards. Each shard
has a two-sided balance constraint, while each pair
of shards has a population constraint.

cause uij(k) ≥ 0 and uij(k) ≥ uij(k+1) for all k (since they
are ordered), all fij(x) are increasing and concave.

Our goal can then be formulated as a concave utility max-
imization problem with linear constraints.

Problem 1 (Constrained relocation). Given a graph
G = (V,E) with the node set partitioned into n shards V1, . . . , Vn,
and size constraints Si ≤ |Vi| ≤ Ti, ∀i, the constrained relo-
cation problem is to maximize:

maxX

∑
i,j fij(xij) s.t. (1)

Si − |Vi| ≤
∑

j 6=i(xij − xji) ≤ Ti − |Vi|, ∀i
0 ≤ xij ≤ Pij , ∀i, j.

(2)

Here Pij is the number of nodes that desire to move from
shard i to j, and fij(x) is the relocation utility function be-
tween shard i and j, both derivable from the graph and the
partition.

For an illustration of the constraints, see Figure 2.
When the above problem is considered under continuous

values of xij , we will now show that it reduces to a fully
tractable optimization problem. Note that relaxing these
integrality constraints on all xij is a fully reasonable ap-
proximation as long as the number of nodes seeking to be
moved between each pair of shards is large.

We aim to rewrite the above optimization problem as a
linear program. Notice that all fij are piecewise-linear con-
cave functions. To see this, notice that the slope of fij is
constant across all intervals where the ordered users have the
same derived utility. As a consequence of this, we obtain the
following straight-forward lemma.

Lemma 1. Assuming a bounded degree graph G, the ob-
jective function in Problem 1, f(x) =

∑
i,j fij(xij), is a

piecewise-linear concave function, seperable in xij.

Proof. The separability is clear from the fact that the
fij depend on different variables. Since users are atomic and
the graph is of bounded degree, there are a finite number
of utilities, and the sum is therefore also piecewise linear.
Since the nodes are sorted in order of decreasing utility, the
function is concave.

Recall that any piecewise linear concave function f(x) :
Rn → R can be written as f(x) = mink=1,...,`(a

T
k x+ bk), for

some choices of ak’s and bk’s. For our problem, all the ak’s
and bk’s are scalar. Now, also recall the following [5].

number of nodes, ordered

c
u

m
u

la
ti
ve

 u
ti
lit

y
 g

a
in

utility function
approximation
solution threshold

0 5000 10000 15000 20000

0
e

+
0

0
5

e
+

0
5

1
e

+
0

6

Figure 3: The piecewise-linear utility function for
moving nodes from one shard to another, from
an example problem iteration. The discontinuous
derivates are imperceivable. The utilty approxima-
tion shown allows for a significant reduction in the
number of constraints in the LP. The red line in-
dicates the threshold found in the optimal solution
for balanced propagation: here 8,424 of the 22,728
nodes that wanted to move were moved.

Lemma 2. Let x ∈ Rn and f(x) = mink=1,...,`(a
T
k x +

bk) be a piecewise linear concave function. Maximizing f(x)
subject to Ax ≤ b is then equivalent to:

max z s.t. (3){
Ax ≤ b

aTk x+ bk ≥ z, ∀k. (4)

Utilizing these two lemmas, we can thus solve the concave
maximization problem in Problem 1 using a linear program.

Theorem 2. Consider a bounded degree graph G = (V,E).
Under continuous xij, the constrained relocation problem
can be written as

maxX,Z

∑
i,j zij s.t. (5)

Si − |Vi| ≤
∑

j 6=i(xij − xji) ≤ Ti − |Vi|, ∀i
0 ≤ xij ≤ Pij , ∀i, j

−aijkxij + zij ≤ bijk, ∀i, j, k,
(6)

where all aijk and bijk derive directly from the relocation util-
ity functions fij. Assuming n shards and at most K unique
utility gains achieved by nodes that would like to move, this
constitutes a linear program with 2n(n− 1) variables and at
most 2n2 +Kn(n− 1) sparse constraints.

Since the most utility a node can gain is its degree, and
furthermore only a small set of nodes in real world graphs
have high degree, it becomes unlikely that all pairs of shards
will observe nodes seeking large utility gains. Thus, in prac-
tice the number of constraints is typically small. For m = 78
and K = 100, this would imply a linear program with 12,012
variables and 612,768 constraints, which is fully manageable
by a basic LP solver owing to the extensive sparsity of the
matrix of constraints.

2.3 Iteration
Procedurally, an iteration of this algorithm differs very

little from an iteration of ordinary label propagation. First,
determine where every node would prefer to move, and how

much each node would gain from its preferred relocation.
Second, sort the node gains for each shard pair and construct
the Constrained Relocation linear program. Third, solve the
linear program, which determines how many nodes should
be moved, in order, between each shard pair. Fourth, move
these nodes. This constitutes one iteration.

When compared to ordinary label propagation, the only
difference is that rather than moving every node that asks
to move, our algorithm pauses, solves a linear program, and
then proceeds to move as many nodes as possible without
breaking the balance. As with ordinary label propagation,
the bulk of the work lies in determining where every node
would prefer to move (which requires examining every edge
in the graph). The entire balancing procedure has a com-
plexity that depends principally on the number of shards
and is nearly independent of the graph size (the number of
constraints per shard pair, K, can depend weakly on the
graph size in practice).

2.4 Approximating utility gain
If the number of constraints becomes limiting, we note

that it is possible to greatly reduce the number of constraints
by a very slight approximation of the objective function.
We emphasize that constraint satisfaction is still guaranteed
under this approximation, it is merely the utility gain of the
iteration that is approximated.

Observe that for each shard pair, the handful of nodes
that stand to gain the most are likely to be contribute rel-
atively unique utility levels, and so contribute many of the
constraints in the problem. This is rather unnecessary, since
those nodes are highly likely to move. Thus, by disregard-
ing the unique utility levels of the first C nodes, all very
likely to move, and approximating them by the mean gain
of this population, we can greatly reduce the number of con-
straints. To exemplify this approximation, in Figure 3 we
show one of the piecewise linear concave utility functions
from a problem instance, corresponding to movement be-
tween two shards, and the threshold on the number of users
that were allowed to be moved in the optimal solution.

3. GEOGRAPHIC INITIALIZATION
When applying greedy algorithms to intricate objective

functions, initialization can dramatically impact performance.
For the balanced label propagation algorithm presented in
the previous section, random initialization — in proportions
that are feasible with respect to the sizing constraints —
might be considered an adequate initialization. However,
by using node data to initialize our assignment, we find that
we can improve on both the number of iterations and the
final sharding quality. How well one can do in this initial
assignment depends on what auxiliary node information is
available. For example, on the web one might use domain,
or in a computer network one might use IP-address. In the
case of the Facebook social network, we find that geograph-
ical information gives us good initial conditions. Thus, in
this section we will examine an initial graph partitioning
based on a geographic partitioning in the absence of any
graph structure.

Facebook’s geolocation services assign all 800 million users
to one of approximately 750,000 cities wordwide. The idea
behind our geographic partitioning is to harness the intuitive
and well-studied properties of geography as a strong basis for
graph assortativity in social networks: individuals have an

elevated tendency to be friends with people geographically
close to them [2].

A key challenge, however, when partitioning a realtime
service based on geographic information, is the heterogene-
ity of traffic between geographies. When balanced propaga-
tion is run under random initialization, it is our experience
that the local improvements made by the algorithm tend to
not discover any large-scale geographic structure. Yet some
parts of the world are much more active on Facebook than
others, and as a result, they have more friends and their
friend-of-friend calculations are much more expensive. As a
result, it is desirable to configure the geographic initializa-
tion so that shards with higher than average degree contain
fewer nodes, and shards with a lower than average degree
contain more.

To achieve this, instead of cutting up the geographic space
to form shards of exactly equal population, we consider a
more general cost model, based on the number of users in
each city and also on the average degree of users in that
city. Note that in this particular sharding challenge we are
most concerned with sharding node attributes, and the dis-
tribution of the graph (as an edge list) is not as central a
concern, but instead we are considering average degree as a
means of distributing computational load. For each city c
with population nc and average degree dc, the cost of the
city is given by Cost(c) = nc(1 + λdc), where λ is a weight
parameter determined by the proportion of node attribute
data to edge attribute data to be sharded. For our appli-
cations we used λ = 1/davg, the reciprocal of the average
degree across the graph.

3.1 Balloon partitioning algorithm
The partitioning algorithm we will present here constructs

shards centered at the most populated cities in the data set,
beginning with the most populated city not yet assigned to
a shard, and grows circular ‘balloons’ around these cities.

This balloon algorithm, illustrated in Figure 4, consists of
a single iterated loop. For each of the i = 1, . . . , n shards,
the goal is to obtain shards each with (

∑
cCost(c))/n in

cost assigned to them. The algorithm first finds the city C
with the largest unassigned cost. The city C is selected as
the center-point of a new shard, and all cities with a non-
zero remaining cost are sorted according to their geodesic
distance from C. Since edges in the social network are over-
whelmingly internal to countries, a negative distance reward
is introduced to all cities in the same country as C. This
ensures that the algorithm finishes assigning each country
completely before moving on to another country. Beginning
with C, the algorithm progresses down the sorted list of
cities, and while there is capacity, it assigns each city to the
shard currently being constructed. When the algorithm does
change countries, a new negative distance reward is given to
cities in that country. Eventually, when there is not enough
capacity in the current shard to accommodate an entire city,
a fractional assignment is noted, and the cost is subtracted
from the remaining cost of that city.

The result is n shards, centered over population centers,
each containing all nodes within a certain radius of the cen-
tral city, adaptively configured such that each shard is of
equal burden under the cost model. A handful of cities are
assigned to multiple shards according to a fractional divi-
sion. The map of cities to shards is used to assign nodes to
shards, and for those cities with distributed fractional as-

C
r

country border

country border

assigned to shard
not assigned

Figure 4: Geometric illustration of the greedy geo-
graphic initialization of a shard, with cities as circles
with radii indicating cost. The algorithm centers it-
self at the most costly remaining city, C, and then
fills a shard with the cities closest to that city, with
a penalty for crossing national borders. When the
shard is full, fractional assignments are made.

signments (at most n of the 750,000 cities), simple random-
ization is used, distributing nodes in such cities proportional
to the fraction of the cost mapped to each shard. A map of
the Facebook social graph partitioned into 234 partitions is
shown in Figure 6.

After performing an initial aggregation of the social graph,
this assignment algorithm operates only on the set of cities
and not on the social graph itself, making it possible to
quickly run this complete assignment on a single machine in
a single processor thread in seconds, with no actual graph
analysis being necessary.

It should be noted that the geographic sharding performed
here is ultimately static, and as new users register to join
the site, these users can be assigned in accordance with the
map from cities to shards. We note that as the geographic
distribution of Facebook users slowly changes over time, re-
sharding may be useful.

3.2 Oversharding
Selecting shards for a real-time graph computation service

from a geographic initialization has another serious practical
challenge that we have not yet discussed. For the purposes
of load-balancing a service that handles real-time requests, it
is important to mitigate potentially problematic peak loads
that result from assigning geographically concentrated re-
gions to the same shard. A three day window of user traffic
is shown in Figure 5, where we see that local geographic re-
gions experience much more volatile peak loads than the full
site on average. Our solution to this problem was to create
3 times more shards than there are machines, and then sort
shards by the longitude of their most populated city. The
shards are then distributed cyclically across the n machines
so that, e.g., shard 1, (n + 1), and (2n + 1) in longitudinal
order are assigned to the same machine.

Figure 6: Output of the greedy geographic initialization algorithm for the ∼ 750, 000 known cities, obtaining
234 shards of equal cost, with each shard’s most costly city marked. As described in the text, the algorithm
is aware of national borders.

a
c
ti
ve

 u
s
e

rs

0 6 12 18 24 30 36 42 48 54 60 66 72
hour

0
a
v
g

2
*a

v
g

FB NZ IT CL

Figure 5: User traffic differences between countries.
Comparing traffic for New Zealand, Italy, and Chile
to that of Facebook as a whole, the intraday variabil-
ity in users accessing the site from a single country
far exceeds the variability of the site as whole.

4. EVALUATING PERFORMANCE
In this section we discuss the performance of our bal-

anced label propagation algorithm as a graph cutting pro-
cedure applied to the Facebook social graph, under both
random and geographic initialization. In Section 5 we eval-
uate shardings of this graph when deployed for a realtime
graph computation service. To align the discussion between
the two sections, we evaluate the algorithm by sharding the
graph into 78 shards, where the service we evaluate later will
consist of 78 machines, evenly split across two server racks.
We also provide a comparison to performance on a publicly
available social graph collected from LiveJournal [1].

4.1 Sharding the Facebook social graph
For the random initialization, all shards of the partition

were constrained to symmetrically balanced node counts.
Meanwhile, for the geographic initialization, partition size
constraints were inherited from the output of the geographic
balloon algorithm initialization, where partition node counts

were tuned to mitigate the differences in average degree be-
tween different parts of the globe, as discussed in the pre-
vious section. All iterations were allowed a five percent le-
niency, f = 0.05, and utility approximation was used within
the constrained relocation problem for the leading 5, 000
nodes between each shard pair.

The matrix of shard-shard edge counts resulting from both
geographic and random initialization are shown in Figure 7,
while the convergence properties observed when iterating
the algorithm are shown in Figure 8. We observe that ini-
tializing the algorithm with a greedy geographic assignment
greatly accelerates the convergence of the algorithm. Using
geographic initialization, before even beginning the propa-
gation we see that 52.7% of edges are locally confined. After
a single propagation, fully 71.5% of edges are local, and after
four iterations this rises to 75.2%.

For the geographic initialization instance, we overshard
by a factor of 3, meaning that 234 virtual shards were dis-
tributed to 78 actual shards. When oversharding for dis-
tributed computation, it is useful to distribute closely re-
lated shards across machines located on the same physi-
cal rack. While this does not effect the fraction of edges
that are local to individual machines, the order in which
the shards are assigned does effect the cross-rack traffic.
Machines within the same rack have relatively fast high-
bandwidth connections compared with machine in different
racks, where all traffic must pass through a switch. Since the
service we study later is split across two racks, we distribute
our 234 geographic shards across the 78 machine shards by
splitting them into two block groups. The first block was set
to contain all shards centered in countries in North America,
Africa and Oceania, and the second block contains all shards
centered in South America, Europe and Asia, with shards
centered in the Middle East balancing between the two sets.
The two-block structure is clearly visible in Figure 7, but we
reiterate that it does not effect the local edge fraction.

For comparison, we investigate the performance of the al-
gorithm when initialized with a random distribution, also

Random Initialization + Prop Geographic Initialization Geographic Initialization + Prop

Lo
ca

l f
ra

ct
io

n

1 10 20 30 40 50 60 70 78
k, shards

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Geo + Prop
Geo
Random + Prop

Figure 7: Matrices of edges between 78 shards under three different shardings: Balanced label propagation
with random initialization, the sharding produced by the geographic initialization, and balanced label propa-
gation after geographic initialization. All matrices share the same logarithmic color scale, saturated to make
the structure of the random initialization visible. The fraction of local edges for each shard is also shown.

Iteration

F
ra

c
ti
o
n
 o

f
e
d
g
e
s
 l
o
c
a
l

0 1 2 3 4 5 6 7 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 Geo

Random

*

*

* = restrained

Iteration

F
ra

c
ti
o
n
 o

f
n
o
d
e
s
 m

o
v
in

g

1 2 3 4 5 6 7 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 Geo

Random

* *

* = restrained

Figure 8: Iterating the balanced label propagation
algorithm with 78 shards, from a geographic and
random initialization. Left: the fraction of edges
that are local as the balanced propagation is iter-
ated. Right: the fraction of nodes that are moved
in each iteration.

shown in Figure 8. After 8 iterations, this random initial-
ization achieved a local fraction of 44.8%.

When nodes are initially distributed at random, it im-
plies that a node’s neighbors are initially distributed uni-
formly across all shards. For graphs where nodes possess
many neighbors, as in the Facebook social graph, this im-
plies that it can take many iterations until the initial sym-
metry of the random initialization is broken. In an impor-
tant demonstration of how label propagation functions, we
observed that applying our balanced label propagation al-
gorithm from a random initial condition meant that 96.7%
of nodes were relocated during the first iteration, a chaotic
shuffling that slows the algorithm’s ability to converge. To
address this, in the random initialization shown here, the lin-
ear program constraints were modified to only move nodes
that claimed to gain 2 or more additional neighbors post-
propagation. This ‘restrained’ modification meant that only
67.0% of nodes were relocated during the first iteration. This
‘restraint’ was used during the first two steps of the random
initialization algorithm, as denoted in the Figure 8, after
which it was removed and ordinary balanced label propaga-
tion was performed.

Why should one bother to move nodes that only stand
to gain one additional neighbor co-location? As another

instructive highlight of how balanced label propagation op-
erates, nodes that are mostly indifferent to moving offer very
useful ‘slack’ for the linear program: by moving them, it is
possible to balance the constraints while still moving many
nodes who stand to make larger gains.

The Facebook social graph is enormous, and these com-
putations do not come cheaply. The graph aggregations re-
quired for a single iteration utilizes approximately 100 CPU
days (2395 CPU hours) on Facebook’s Hadoop cluster. For
comparison, a simple two-sided join aggregation of the graph
edge list (such as computing a shard-shard matrix in Fig-
ure 7) uses 72 CPU days. Once the aggregations have been
performed, the linear program is solved in a matter of min-
utes on a single machine using lpsolve [4].

While the randomly initialized algorithm only achieves
44.8% locality compared to 75.2% locality for the geographic
initialization, the random initialization produces an impres-
sively homogenous sharding free of ‘hot’ shard-shard connec-
tions. It would be interesting to iterate the random initial al-
gorithm further, but running the random initialization for 8
iteration utilized approximately 800 CPU days. Examining
the properties of balanced label propagation more throughly
on modest graphs would be important future work.

4.2 LiveJournal comparison
Because the Facebook social graph is not publicly avail-

able, we also report the performance of our algorithm when
attempting to partition a large publicly available social net-
work dataset, LiveJournal [1]. The LiveJournal graph, col-
lected in 2006, is a directed graph consisting of of 4.8 million
nodes and 69.0 million arcs. Because we are principally in-
terested in partitioning undirected graphs, we consider the
undirected graph consisting of 4.8 million nodes and the 42.9
million unique edges that remain and disregarding direction-
ality.

The resulting graph is more than 20 times smaller than
the Facebook graph by node count and more than 1000 times
smaller by edge count. The average degree is only 8.8, mak-
ing partitioning much less challenging. Because the public
LiveJournal graph lacks complete geographic information,
we consider only random initialization. We consider the per-
formance of cutting the graph into 20, 40, 60, 80, and 100
symmetric shards, with five percent leniency (f = 0.05) and
no approximation of the utility gain. Splitting into 20 shards
took less than 3 minutes using a single threaded C++ im-

Iteration

F
ra

c
ti
o
n
 o

f
e
d
g
e
s
 l
o
c
a
l

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 20 shards

40
60
80
100

Iteration
F

ra
c
ti
o
n
 o

f
n
o
d
e
s
 m

o
v
in

g

1 3 5 7 9 11

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 20 shards

40
60
80
100

Figure 9: Balanced label propagation applied the
LiveJournal social graph, partitioning the graph into
20, 40, 60, 80, and 100 shards. Left: the fraction
of edges that are local as the balanced propagation
is iterated. Right: the fraction of nodes that are
moved in each iteration.

plementation, while splitting into 40 shards took 8 minutes,
and splitting into 100 shards took 88 minutes.

The results from partitioning the LiveJournal graph are
shown in Figure 9, where we see that when partitioning the
LiveJournal graph into 20 parts, 63% of edges are local to a
single partition. Impressively, when the algorithm is scaled
up to 100 shards, fully 51% of edges are local to a single
partition. Overall, we observe that the fraction of edges that
are local is nearly unchanged when increasing the number
of shards from 40 to 100. We interpret this performance
to be a consequence of the greedy nature of the algorithm,
as the algorithm principally exploits local graph relocations
that are significantly below the scale of any of the shard
sizes, while global improvements are less possible. A further
investigation of this scaling behavior in relation to studies
of natural social network cluster sizes [11] would make for
interesting future work.

5. REALTIME DEPLOYMENT
In this section, we present the results of a large-scale ex-

periment where the sharding algorithm we develop is eval-
uated in a realtime distributed graph computation service:
Facebook’s ‘People You May Know’ (PYMK) service for sug-
gesting friend recommendations.

Many pages on Facebook occasionally feature a small mod-
ule presenting users with ‘People You May Know’. The
PYMK service has contributed significantly to the growth
of Facebook, accounting for around 40% of all friending on
Facebook. The friend suggestions that populate this mod-
ule are mostly (but not exclusively) generated by the system
described in this work.

5.1 People You May Know
The PYMK system computes, for a given user u, and

each friend-of-friend (FoF) of u, w, a feature vector xu,w of
graph metrics based on the local structure between u and
w. The system then uses machine learning to rank all the
suggestions w for u, based on the graph-based feature vec-
tor xu,w, as well as demographic features of u and w. The
system described here returns the top 100 suggestions for
each user (out of a potential of many thousands of FoFs).
Regeneration of suggestions is performed when a user logs

in to Facebook and no recent suggestions for the user are
found in the cache.

The PYMK service consists of 78 machines split across
two racks (there are 40 machines to a rack, but one machine
per rack is reserved as a backup). All 78 machines feature
72 GB of memory, which is used to store two in-memory
indexes. First, a mirrored data structure containing basic
demographic data of all 800 million users (19 GB). Second,
a sharded index containing the friendlist data of those users
assigned to the individual machine (∼40 GB). All in-memory
indexes are stored as open-addressed hash tables. To handle
the full query volume, a number of identical copies of this
78 machine system run in parallel.

Prior to the optimizations presented in this paper, users
were assigned to machines based on their user ID mod 78,
see Figure 1. This naive sharding has a direct advantage over
any sophisticated sharding in that the shard ID is encoded
directly in the user ID. Introducing the more sophisticated
shardings used in this paper requires adding an additional
data structure serving as a shard map, mirrored on all ma-
chines, to map the 800 million user IDs to shard IDs.

The evaluation we perform examined three separate in-
stances of the PYMK service operating in parallel, receiving
identical and evenly balanced shares of the service load, dif-
fering only with regard to their sharding configuration. The
three systems were:

• Baseline sharding: assigning users by the modulus
sharding, ‘user ID % 78’.

• Geographic sharding: assigning users using 234 ge-
ographic shards, with no label propagation.

• Propagated sharding: one step of balanced label
propagation after geographic initialization.

Because of resource constraints we were only able to test
three parallel systems, and did not deploy a propagated
sharding featuring random initialization, which required much
more iteration and achieved worse edge localization than the
unpropogated geographic initialization.

First, we characterize the impact of our sharding by eval-
uating our algorithm’s ability to concentrate requests to
few machines, reporting on the number of machines queried
across requests. Next, because intelligent sharding disadvan-
tages the PYMK service by requiring an additional round of
requests (as described in the introduction), we evaluate the
algorithm’s ability to reduce to total query time of FoF re-
quests, with particular attention to the slowest machine, as
well as the ability to reduce the total cross-machine network
traffic within the full system.

The evaluation was performed during the three day period
September 20-22, 2011. Because the evaluation required the
dedication of considerable hardware resources (6 racks of
machines, in total 240 machines), testing on exactly identi-
cal hardware configurations was not possible (it was impor-
tant to test the three systems in parallel so that no exter-
nal events could impact the results). All machines featured
72GB of memory, while the machines in the baseline sys-
tem and the geographic system featured 12 CPUs and the
machines in the propagated system featured 24 CPUs, all
2.67 GHz Intel Xeon processors. This difference of CPU re-
sources is one of the main reasons we focus our analysis on
hardware invariant performance evaluations such as request
concentration and network traffic measurements.

5.2 Request concentration
Here we consider the concentration of requests in a real-

time setting, recording the number of machines accessed per
query. Because the PYMK system has to wait for the slow-
est query response before performing ranking, the number
of machines queried is an important performance charac-
teristic. By waiting for fewer machines, the expected time
needed to wait until the slowest machine has returned data
can be significantly decreased.

Baseline performance. In the baseline system, users
are sharded by their Facebook user ID modulus 78. Prior to
the sharding optimizations in this paper, the distribution of
requests on each machine was not instrumented, and because
there were significant architectural changes to the service
when the sharding optimization was introduced, the baseline
system was not upgraded to include instrumentation.

Fortunately, the trailing digits of a user’s ID are uncorre-
lated from the trailing digits of the user IDs of their friends,
and thus the question of how many machines are queried
during an average aggregation can be computed directly
given only the degree distribution of the graph.

Consider a graph sharded across m machines. Let Xi,
i = 1, . . . ,m be the Bernoulli random variables indicating
whether a given user has a friend on machine i. Let Y =∑m

i=1Xi be the total number of machines that are queried
when this user’s friends data is aggregated. By the law of
total probability,

Pr(Y = k) =∑
d

Pr(Y = k| deg(u) = d) · Pr(deg(u) = d),

where deg(u) is the degree of the user, and Pr(deg(u) = d)
is the empirical Facebook degree distribution. Focusing on
the term Pr(Y = k| deg(u) = d),

Pr(Y = k|deg(u) = d) =

Pr

(
m∑
i=1

Xi = k| deg(u) = d

)
,

where Xi are Bernoulli distributed random variables. To
derive the distribution of Xi, notice that, ∀i,

Pr(Xi = 1|deg(u) = d) =

= 1− Pr(Xi = 0|deg(u) = d)

= 1− (1− 1/m)d .

Thus, we see that Xi ∼ Bernoulli(1−(1−1/m)d), ∀i. While
these m variables are identically distributed, they are unfor-
tunately not independent.

Since the variables Xi are not independent, we resort to a
simple Monte Carlo simulation of the distribution Pr(Y =
k| deg(u) = d) for a uniformly sharded system. Combing
this distribution with the empirical degree distribution from
PYMK queries, Pr(deg(u) = d), gives us the theoretical
request concentration distribution for the baseline system.

Results. In Figure 10, we compare the distribution of re-
quests as measured for the two algorithms and computed for
the baseline system. Note that our measurement of request
concentration is not affected by differences in hardware or
traffic volumes between the three systems.

The median number of non-local machines queried for the
baseline, geographic, and once-propagated shardings were
59, 12, and 9 machines, respectively. Notice that under the

P
r(

 Y
 =

 k
 m

a
c
h

in
e

s
 q

u
e

ri
e

d
)

0 10 20 30 40 50 60 70 77
k, machines

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

base geographic propagated

Figure 10: Number of non-local machines queried
per request during friend-of-friend calculations in
PYMK. The median number of machines queried
for the baseline, geographic, and once-propagated
shardings were 59, 12, and 9 machines, respectively.

old naive system, the most common occurrence was that
friend lists had to be aggregated from all 77 non-local ma-
chines, while the modes for the new shardings are 6 non-local
machines for the geographic sharding and 3 non-local ma-
chines for the once-propagated sharding.

5.3 Query time and network traffic
Here we report on the relative performance of the three

systems with regard to query time and network traffic. While
the hardware specifications of the three PYMK services were
not identical, with the propagated sharding operating with
twice as many CPUs per machine, we still report the query
times, noting that each query was run in a single thread,
and that for the most part, the number of cores per ma-
chine did not come into play. The baseline and geographic
systems were run on identical hardware, and in any event
the bandwidth comparisons are independent of the machine
specifications and can thus be taken at face value.

The time-averages of the average machine query times
for the baseline, geographic, and once-propagated shard-
ings were 109ms, 68ms, and 55ms, respectively. The time-
averages of the maximum machine query times were 122ms,
106ms, and 100ms, respectively (not plotted). Notice that
the geographic system, which operated on hardware identi-
cal to the baseline system, featured an average query time
only 62.3% of the baseline system. The total improvement
when comparing to the propagated system was an average
query time only 50.5% of the baseline system.

Recall that the two optimized systems being tested are
disadvantaged compared to the baseline system because they
must perform an additional query redirection, since the web
tier does not possess a copy of the shard map and doesn’t
know which of the 78 machines the user lives on.

Meanwhile, when we turn to network traffic, the time-
averages of the average machine traffic for the baseline, ge-
ographic, and once-propagated shardings were 35.3 MB/s,
21.8 MB/s, and 13.1 MB/s, respectively. The time-averages
of the maximum machine traffic (not plotted) were 103.6
MB/s, 68.0 MB/s, and 51.0 MB/s, respectively. The sys-
tems were configured to be equally load-balanced, each han-
dling equal thirds of the total traffic. Thus, the machines in
the propagated system saw network traffic levels only 37.1%
of the baseline system machines.

m
a

c
h

in
e

 q
u

e
ry

 t
im

e
,

a
v
e

ra
g

e
 (

m
s
)

0 6 12 18 24 30 36 42 48 54 60 66 72
hour

0
2

5
5

0
7

5
1

0
0

1
2

5
1

5
0

base geographic propagated

m
a

c
h

in
e

 r
x
,

a
v
e

ra
g

e
 (

M
B

/s
)

0 6 12 18 24 30 36 42 48 54 60 66 72
hour

0
1

0
2

0
3

0
4

0
5

0

base geographic propagated

Figure 11: Query time and network traffic for the three different shardings applied to the PYMK service.
Because network traffic is instrumented on a machine level, the data also captures daily traffic bursts which
correspond to loading data into the service. For this reason, momentary outliers should be considered benign.

6. DISCUSSION
The problem of clustering a graph for community detec-

tion is a widely studied active area of research within com-
puter science and physics [13, 14]. In this work, we ap-
proach the rather different challenge of graph partitioning.
We develop and evaluate a novel algorithm, balanced label
propagation, for partitioning a graph while managing these
challenges.

We show that by using intelligent partitioning in the con-
text of load-balancing a realtime graph computation service,
we are able to dramatically outperform a baseline configu-
ration. While a random initialization of our balanced label
propagation algorithm produces an impressive sharding, we
show that by using user metadata we can derive a shard-
ing that is greatly superior to a random initialization while
still maintaining uniformity in shard sizes. These techniques
were applied to a single system in this work, but we believe
that they are broadly applicable to any graph computation
system that distributes graphs across many machines.

7. ACKNOWLEDGMENTS
We thank Jon Kleinberg for helpful discussions. This work

was supported in part by NSF grants IIS-0910664 and IIS-
1016099.

8. REFERENCES
[1] L. Backstrom, D. Huttenlocher, J. Kleinberg, X. Lan.

Group formation in large social networks:
membership, growth, and evolution. In KDD, 44–54,
2006.

[2] L. Backstrom, E. Sun, C. Marlow. Find me if you can:
improving geographical prediction with social and
spatial proximity. In WWW, 61–70, 2010.

[3] M.J. Barber, J.W. Clark. Detecting network
communities by propagating labels under constraints.
Physical Review E, 80:026129, 2009.

[4] M. Berkelaar. The lpsolve package.
http://lpsolve.sourceforge.net, 2011.

[5] S.P. Boyd, L. Vandenberghe. Convex optimization.
Cambridge University Press, 2004.

[6] U. Feige, R. Krauthgamer. A polylogarithmic
approximation of the minimum bisection. In FOCS,
105–115, 2000.

[7] S. Fortunato. Community detection in graphs. Physics
Reports, 486:75–174, 2010.

[8] M.R. Garey, D.S. Johnson, L. Stockmeyer. Some
simplified NP-complete graph problems. Theoretical
computer science, 1(3):237–267, 1976.

[9] S. Gregory. Finding overlapping communities in
networks by label propagation New Journal of
Physics, 12:103018, 2010.

[10] G. Karypis, V. Kumar. Multilevel k-way partitioning
scheme for irregular graphs. J. Parallel Distrib.
Computing 48(1):96–129, 1998.

[11] J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney.
Community structure in large networks: natural
cluster sizes and the absence of large well-defined
clusters. Internet Mathematics 6(1):29–123, 2009.

[12] D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan,
A. Tomkins. Geographic routing in social networks.
PNAS, 102:11623, 2005.

[13] P.J. Mucha, T. Richardson, K. Macon, M.A. Porter,
and J.P. Onnela. Community structure in
time-dependent, multiscale, and multiplex networks.
Science, 328:876, 2010.

[14] M.E.J. Newman, M. Girvan. Finding and evaluating
community structure in networks. Physical Review E,
69:026113, 2004.

[15] H.N. Fowler. Plato: Phaedrus, Loeb Classical Library,
1971.

[16] U.N. Raghavan, R. Albert, S. Kumara. Near linear
time algorithm to detect community structures in
large-scale networks. Physical Review E, 76:036106,
2007.

[17] I. Stanton, G. Kilot. Streaming graph partitioning for
large distributed graphs. KDD, 1222–1230, 2012.

[18] A. Thusoo, JS Sarma, N Jain, Z Shao, P Chakka,
N Zhang, S Antony, H Liu, R Murthy. Hive – a
petabyte scale data warehouse using hadoop. In
ICDE, 996–1005, 2010.

[19] J. Ugander, B. Karrer, L. Backstorm, C. Marlow. The
anatomy of the Facebook social graph. Arxiv preprint
arXiv:1111.4503, 2011.

[20] X. Zhu, Z. Ghahramani. Learning from labeled and
unlabeled data with label propagation. CMU CALD
Tech Report CMU-CALD-02-107, 2002.

APPENDIX
This appendix is an addendum to the published version of
this paper.

A. ASSEMBLING THE LP
Here we briefly review how to assemble the problem in-

stance from the input data, in particular the task of deter-
mining the proper values of aijk and bijk for specifying the
program. We obtain the following result.

Lemma 3. Let ci,j,k be the number of users who gain the
kth utility level (in decreasing order) when switching from

i to j, and Sk =
∑k

`=1 ci,j,` be the partial sum of users
gaining more than the kth utility level. For the program
specified above, the values of ai,j,k and bi,j,k can be calculated
recursively as:

ai,j,k = uij(k), ∀i, j, k
bi,j,1 = 0, ∀i, j
bi,j,k = bi,j,k−1 + ci,j,k−1ai,j,k−1

+Sk−2ai,j,k−1 − Sk−1ai,j,k, ∀i, j,∀k > 1.

Proof. Recall that each linear segment of fij corresponds
to a unique gain in utility by some non-empty set of users.
The k = 1, . . . ,K unique gains in utility per user are then
precisely the slopes of the corresponding line segments, so
aijk = uij(k), for all i, j, k.

Next, observe that for each fij(0) = 0 for all i, j, which
means that bij0 = 0 for all i, j.

Lastly, the recursive formula is an exercise in straight-
forward geometry, to compute the correct y-intercept of each
line segment.

By sorting the users by which machine they would like to
move to and their co-location gain, it is therefore possible
to build the entire LP instance via a single streaming pass
of the input data, recording the necessary partial sums.

