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▪ Distributing graph calculations ( ‘sharding a graph’) makes 
traversal/aggregation very expensive.
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ID%n == 0 ID%n == 1 ID%n == 2 ID%n == 3

ID%n == n-4 ID%n == n-3 ID%n == n-2 ID%n == n-1

   ...

f(ID) == 0 f(ID) == 1 f(ID) == 2 f(ID) == 3

f(ID) == n-4 f(ID) == n-3 f(ID) == n-2 f(ID) == n-1

   ...

Motivation: distributed computation

Oh... and the algorithm 
better be FAST.



▪ Garey, Johnson, Stockmeyer 1976:  Minimum bisection is NP-hard

▪ Karypsis and Kumar 1998:     METIS

▪ Feige and Krautgamer 2000:    O(n1/2 log n)-factor approximation

Partitioning a really big graph: How?



▪ Garey, Johnson, Stockmeyer 1976:  Minimum bisection is NP-hard

▪ Karypsis and Kumar 1998:     METIS

▪ Feige and Krautgamer 2000:    O(n1/2 log n)-factor approximation

▪ METIS does not scale to 100B+ edges.

▪ Need a principled approach, ideally one that can be Hadoop-ified.

Partitioning a really big graph: How?



Basic idea: Label propagation

▪ Iteratively move nodes to be with the plurality of their neighbors:
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▪ Iteratively move nodes to be with the plurality of their neighbors:
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Balance via Linear Program 

▪ Greedily maximize edge locality with constraints (max/min sizes Si,Ti):

Cumulative gain from moving       people (ordered by co-location gain).

Solution: number of people to move from i to j.xij

fij(x) x

xij

fij(xij)

(piecewise-linear concave!)
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▪ Greedily maximize edge locality with constraints (max/min sizes Si,Ti):

▪ Linear Program:      n=78 machines => 12k variables / 400k constraints

(Maximize the co-location gain of all 
machine swaps)
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▪ Summary of algorithm:

▪ Step 1: Figure out who wants to move

▪ Step 2: Solve LP to decide who can move without breaking balance

▪ Step 3: Move those people

Balance via Linear Program 



▪ Summary of algorithm:

▪ Step 1: Figure out who wants to move

▪ Step 2: Solve LP to decide who can move without breaking balance

▪ Step 3: Move those people

Step 2 is the contribution compared to ordinary Label Prop.

Balance via Linear Program 



What about geography?



Initialization using geography

▪ Possible to do much better than random with Facebook, using geography.



▪ Possible to do much better than random with Facebook, using geography.

▪ Spatial model of small-world networks (for routing): Kleinberg 2000

▪ Validation: Liben-Nowell et al. 2005; Backstrom, Sun, Marlow 2010.

▪ Friendship probability as a function of rank-distance:
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Figure 8: Looking at the people living in low,
medium and high density regions separately, we see
that if you live in a high density region (a city), you
are less likely to know a nearby individual, since
there are so many of them. However, you are more
likely to have contact with someone far away.

in a number of ways. The most obvious application is that
we can provide them with better local content. Providing a
more local, personalized experience is likely to make a site
more useful for users. We can also use a person’s location to
help prevent security breaches – if an individual accesses the
site from a location far from home (where the individual’s
current location is approximated via IP geolocation), and
they have never been there before, we might ask them an
additional security question to ensure that their account has
not been compromised. Thus, our goal here is, given the
locations of a user’s contacts, to compute that user’s home
location.

In the simplest case, all of one’s friends would live in a
small region, and then the prediction task would be very
simple, with any reasonable algorithm returning a good ap-
proximation. Things get more complicated and di⇥cult as
one’s friends become more spread out. The distributions
from the previous sections tell us that one will typically not
have too many friends at great distances, but that there will
be too many for naive algorithms to work well.

For instance, a first attempt would be to take the mean
location of one’s friends. However, this will give laughably
bad results for people living on either coast. An individual
with 10 friends in San Francisco and one friend in New York
will be placed an eleventh of the way from San Francisco to
New York, somewhere in Nevada. Other simple statistics,
like median (whatever that would mean in two dimensions)
do better, but still fail, especially for people living on the
coasts.

To achieve better performance, we must develop a more
sophisticated model using the observations from the pro-
ceeding sections. Figure 7 shows the probability of an edge
being present as a function of distance, which suggests a
maximum likelihood approach. We consider an individual u
with k friends. Using the distribution from Figure 7, we can
computed the likelihood of a given location lu = (lat, long).
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Figure 9: The rank of a person v relative to u is the
number of individuals w such that d(u, w) < d(u, v).
Here we show the probability of friendship as a func-
tion of rank.

For each friend v of u whose location lv is known, we can
compute the probability of the edge being present given the
distance between u and v, p(|lu � lv|) = 0.0019(|lu � lv| +
0.196)�1.05, as empirically determined.

Multiplying these probabilities together for all such v, we
obtain a likelihood for all the edges. To complete the cal-
culation, we must also multiply the probabilities of all the
other edges not being present: 1� p(|lu � lv|) for all v such
that v /⇤ E. Because all of the probabilities are very small for
any particular edge, this term serves mostly as a tiebreaker
and typically plays a small role. Thus, we can write down
the likelihood of a particular location lu as

Y

(u,v)⇥E

p(|lu � lv|)
Y

(u,v)/⇥E

1� p(|lu � lv|)

This model gives us a way to evaluate any point lu. From
a practical point of view, however, the algorithm as stated
is very expensive. In a naive implementation, to find the
best location for one individual, we would have to compute
the probability terms for every other user, at an expense
of O(N) per location evaluated. Finding the best location
would require an additional search, making this impractical
in a large graph.

With two optimizations, however, we can develop an ef-
ficient algorithm which computes the (near) optimal loca-
tions for all individuals in O(M log N) assuming that the
maximum degree in the graph is O(log N) (where M is the
number of edges and N is the number of users).

The first important observation is that, for any location,
the second part of the product, containing 1 � p(·), is very
nearly independent of u. Thus, we can precompute a con-
stant �l =

Q
v⇥V 1� p(|lu � lv|) for each location l. We can

then rewrite the above formula as:

�lu =
Y

(u,v)⇥E

p(|lu � lv|)
1� p(|lu � lv|)

The other important optimization comes from the form

– Backstrom, Sun, Marlow 2010
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Results: Iteration convergence
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▪ Random initialization slow to start when:  avg degree > # partitions
Use ‘restraint’: only move big gainers (*s below)
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Results: Iteration convergence
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▪ Geographic initialization ‘converges’ within 1 step

▪ Random initialization slow to start when:  avg degree > # partitions
Use ‘restraint’: only move big gainers (*s below)

▪ LJ partitioning quality not so dependent on # partitions: 
BLP exploiting primarily local structure.

LiveJournal (n=4.8m, |E|=42.8m) Facebook ( n=800m,  |E|=68b )



Results: Machine adjacency matrix

▪ Random initialization + 8 step prop
▪ Geographic initialization ONLY
▪ Geographic + 1 step prop

▪ Targeting n=78 machines: 
2 racks of 39, visible as blocks

Random Initialization + Prop Geographic Initialization Geographic Initialization + Prop

Geographic Initialization + Prop

●
●
●

●

●
●

●
●●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

Lo
ca

l f
ra

ct
io

n ●

●

●

●●●

●
●

●

●
●
●

●

●●
●●

●
●

●

●

●

●

●

●

●

●●

●●
●
●

●
●

●
●
●

●

●

●
●

●

●

●
●
●
●
●●

●

●

●●
●

●●

●●●

●

●

●
●

●

●

●

●●

●

●
●
●●

●
●

●

●●

●
●●

●
●●●●●●

●●
●
●●●●

●

●

●
●●●●●●

●
●
●●

●●●
●
●
●
●●

●

●●
●
●
●
●
●

●●
●
●
●

●●
●
●
●
●
●
●

●

●

●

●
●

●
●●●●

●

●

●●●
●
●
●
●

1 10 20 30 40 50 60 70 78
k, shards

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● Geo + Prop
● Geo
● Random + Prop



‘People You May Know’

▪ PYMK = ‘People You May Know’

▪ Ranked suggestion of friends-of-friends (FoFs) as friends.

▪ Average user has 40k FoFs, widely distributed.

▪ Ranks 145,000,000 suggestions per second.

▪ Graph distributed across 78 machines 
with 72GB RAM each.

Me 

Friends of Friends 

ID 24 ID 54 ID 8  ID 4 ID 30

Me = ID #3
Friends IDs: 24, 54, 4, 30, 8



▪ PYMK = ‘People You May Know’

▪ Ranked suggestion of friends-of-friends (FoFs) as friends.

▪ Average user has 40k FoFs, widely distributed.

▪ Ranks 145,000,000 suggestions per second.

▪ Graph distributed across 78 machines 
with 72GB RAM each.

Me 

Friends of Friends 

Me = ID #3
Friends IDs: 24, 54, 4, 30, 8

ID 24 ID 54 ID 8  ID 4 ID 30

Want to shard so that
my friends on same machine as me!

‘People You May Know’



Results: PYMK request concentration

▪ Median number of machines hit per query reduced from 60 to ?.
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▪ Median number of machines hit per query reduced from 60 to 9.

▪ Query time: What about overhead? Faster or slower? 

Results: PYMK request concentration
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Results: Query time / network traffic
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Query time Network traffic

▪ Median number of machines hit per query reduced from 60 to 9.

▪ Query time reduced by 49%, traffic reduced by 63%:



Conclusions and Future work

▪ Label propagation is fast, we show it can be constrained

▪ Social networks very clustered, making local algorithms very effective

▪ Geographic metadata very useful

▪ Sharding greatly improves distributed graph computations such as PYMK


