Balanced Label Propagation
for Partitioning Massive Graphs
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Goal: partition a really big graph

facebook



Motivation: distributed computation

= Distributing graph calculations (‘sharding a graph’) makes
traversal/aggregation very expensive.
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* Intelligent sharding: specify a shard map f() that colocates users with friends

[ f(ID) == 0 ][ f(ID) == 1 ][ f(ID) == 2 ][ f(ID) == 3 ]

Q[ \* 2 Oh...and the algorithm
m— better be FAST.
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Partitioning a really big graph: How?

= Garey, Johnson, Stockmeyer 1976: Minimum bisection is NP-hard
= Karypsis and Kumar 1998: METIS

* Feige and Krautgamer 2000: O(n¥2log n)-factor approximation



Partitioning a really big graph: How?

= Garey, Johnson, Stockmeyer 1976: Minimum bisection is NP-hard
= Karypsis and Kumar 1998: METIS

* Feige and Krautgamer 2000: O(nY2log n)-factor approximation

= METIS does not scale to 100B+ edges.

* Need a principled approach, ideally one that can be Hadoop-ified.



Basic idea: Label propagation

= [teratively move nodes to be with the plurality of their neighbors:

- Zhu, Ghahramani. CMU Tech Report 2002.
- Raghavan, Albert, Kumara. Phys Rev E 2007.
- Barber, Clark. Phys Rev E 20009.
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= [teratively move nodes to be with the plurality of their neighbors:
= But how to maintain balance?

= Label = machine |
machine

V Modification! Figure out who wants to move.
1 _if P13 people want to move from 1to 3.
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Constraints 4
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Balance via Linear Program

- Greedily maximize edge locality with constraints (max/min sizes S;,Ti):

L Solution: number of people to move fromitoj.
J
) Cumulative gain from moving = people (ordered by co-location gain).

fij(xij)

(piecewise-linear concave!)
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Balance via Linear Program

- Greedily maximize edge locality with constraints (max/min sizes S;,Ti):

L Solution: number of people to move fromitoj.
) Cumulative gain from moving = people (ordered by co-location gain).

max »  fi;(%ij) nd oWl s ey =) R R
ey 0 < Xij < ISl T, g
(Maximize the co-location gain of all (Subject to balance)
machine swaps) (and the number of people available to move)

* Linear Program: n=78 machines => 12k variables / 400k constraints
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Balance via Linear Program

* Summary of algorithm:
- Step 1: Figure out who wants to move
= Step 2: Solve LP to decide who can move without breaking balance

= Step 3: Move those people

Step 2is the contribution compared to ordinary Label Prop.



What about geography?

facebook



Initialization using geography

= Possible to do much better than random with Facebook, using geography.



Initialization using geography

= Possible to do much better than random with Facebook, using geography.
- Spatial model of small-world networks (for routing): Kleinberg 2000
- Validation: Liben-Nowell et al. 2005; Backstrom, Sun, Marlow 2010.

* Friendship probability as a function of rank-distance:
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Results: Iteration convergence

= Geographicinitialization ‘converges’ within 1 step

Facebook (n=800m, |E|=68b )
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Results: Iteration convergence

= Geographicinitialization ‘converges’ within 1 step

- Random initialization slow to start when: avg degree > # partitions
Use ‘restraint’. only move big gainers (*s below)
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= Geographicinitialization ‘converges’ within 1 step

- Random initialization slow to start when: avg degree > # partitions
Use ‘restraint’. only move big gainers (*s below)

= L) partitioning quality not so dependent on # partitions:

BLP exploiting primarily local structure.
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Results: Iteration convergence

LiveJournal (n=4.8m, |E|=42.8m)
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Results: Machine adjacency matrix

Random Initialization + Prop

* Random initialization + 8 step prop "
= Geographicinitialization ONLY gf’o: WWW
- Geographic +1 step prop %Z_ T SO TRIARS, O ¢ VN VRP SR
32— —— Geo + Prop
- Targeting n=78 machines: o —— Random + Prop
2 racks of 39, visible as blocks "1 % 30 40 50 60 70 78




‘People You May Know’

- PYMK =‘People You May Know’

- Ranked suggestion of friends-of-friends (FoFs) as friends.

- Average user has 40k FoFs, widely distributed.
- Ranks 145,000,000 suggestions per second.

= Graph distributed across 78 machines
with 72GB RAM each.
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Friends IDs: 24, 54, 4, 30, 8
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- PYMK =‘People You May Know’
- Ranked suggestion of friends-of-friends (FoFs) as friends.

- Average user has 40k FoFs, widely distributed.

Me =ID #3
Friends IDs: 24, 54, 4, 30, 8

- Ranks 145,000,000 suggestions per second.

= Graph distributed across 78 machines

with 72GB RAM each. (

Want to shard so that
my friends on same machine as me!
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Results: PYMK request concentration

= Median number of machines hit per query reduced from 60 to 2.
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Results: PYMK request concentration

- Median number of machines hit per query reduced from 60 to 9.
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Results: PYMK request concentration

- Median number of machines hit per query reduced from 60 to 9.
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- Query time: What about overhead? Faster or slower?



Results: Query time / network traffic

- Median number of machines hit per query reduced from 60 to 9.

= Query time reduced by 49%, traffic reduced by 63%:
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Conclusions and Future work

- Label propagation is fast, we show it can be constrained

= Social networks very clustered, making local algorithms very effective

= Geographic metadata very useful

- Sharding greatly improves distributed graph computations such as PYMK



