Balanced Label Propagation
for Partitioning Massive Graphs

Johan Ugander, Cornell University

L @W]i[y
U == orne 1versi
©@ == @
o A‘@ﬁ
Lars Backstrom, Facebook f k
WSDM 13 aceboo

Goal: partition a really big graph

facebook

Motivation: distributed computation

= Distributing graph calculations (‘sharding a graph’) makes
traversal/aggregation very expensive.

())l)l]

R
o
pm—

()))]

Motivation: distributed computation

= Distributing graph calculations (‘sharding a graph’) makes
traversal/aggregation very expensive.

 Naive sharding:

[ID%n==0][ID%n == 1][ID%n == 2][ID%n == 3]

o
YA Pr(colocation)=1/n
R—

{ ID%n == n-4] [ID%n == n-3] [ID%n == n-2] [ID%n == n-1]

Motivation: distributed computation

= Distributing graph calculations (‘sharding a graph’) makes
traversal/aggregation very expensive.

 Naive sharding:

[ID%n==0][ID%n == 1][ID%n == 2][ID%n == 3]

o
YA Pr(colocation)=1/n
R—

[ID%n == n-4] [ID%n == n-3] [ID%n == n-2] [ID%n == n-1]

* Intelligent sharding: specify a shard map f() that colocates users with friends

[f(ID) == 0][f(ID) == 1][f(ID) == 2][f(ID) == 3]

T

[f(ID) == n-4 }[f(ID) == n-3 }[f(ID) == n-2 }[f(ID) == n-1]

Motivation: distributed computation

= Distributing graph calculations (‘sharding a graph’) makes
traversal/aggregation very expensive.

 Naive sharding:

[ID%n==0][ID%n == 1][ID%n == 2][ID%n == 3]

o
YA Pr(colocation)=1/n
R—

[ID%n == n-4] [ID%n == n-3] [ID%n == n-2] [ID%n == n-1]

* Intelligent sharding: specify a shard map f() that colocates users with friends

[f(ID) == 0][f(ID) == 1][f(ID) == 2][f(ID) == 3]

Q[* 2 Oh...and the algorithm
m— better be FAST.

[f(ID) == n-4 }[f(ID) == n-3 }[f(ID) == n-2 }[f(ID) == n-1]

Partitioning a really big graph: How?

= Garey, Johnson, Stockmeyer 1976: Minimum bisection is NP-hard
= Karypsis and Kumar 1998: METIS

* Feige and Krautgamer 2000: O(n¥2log n)-factor approximation

Partitioning a really big graph: How?

= Garey, Johnson, Stockmeyer 1976: Minimum bisection is NP-hard
= Karypsis and Kumar 1998: METIS

* Feige and Krautgamer 2000: O(nY2log n)-factor approximation

= METIS does not scale to 100B+ edges.

* Need a principled approach, ideally one that can be Hadoop-ified.

Basic idea: Label propagation

= [teratively move nodes to be with the plurality of their neighbors:

- Zhu, Ghahramani. CMU Tech Report 2002.
- Raghavan, Albert, Kumara. Phys Rev E 2007.
- Barber, Clark. Phys Rev E 20009.

Basic idea: Label propagation

= [teratively move nodes to be with the plurality of their neighbors:

- Zhu, Ghahramani. CMU Tech Report 2002.
- Raghavan, Albert, Kumara. Phys Rev E 2007.
- Barber, Clark. Phys Rev E 20009.

Basic idea: Label propagation

= [teratively move nodes to be with the plurality of their neighbors:

- But how to maintain balance?

- Zhu, Ghahramani. CMU Tech Report 2002.
- Raghavan, Albert, Kumara. Phys Rev E 2007.
- Barber, Clark. Phys Rev E 20009.

Basic idea: Label propagation

= [teratively move nodes to be with the plurality of their neighbors:
= But how to maintain balance?

= Label = machine |
machine

machine machine

machine machine

Basic idea: Label propagation

= [teratively move nodes to be with the plurality of their neighbors:
= But how to maintain balance?

= Label = machine

machine
V Modification! Figure out who wants to move.
1 if P13 people want to move from 1to 3.

allow only 13 people move, s.t. flow balance.

machine machine

machine machine

Basic idea: Label propagation

= [teratively move nodes to be with the plurality of their neighbors:
= But how to maintain balance?

= Label = machine

machine
V Modification! Figure out who wants to move.
Constraints \ 1 if P13 people want to move from 1to 3.

_<V/‘(V//Z \Now only 13 people move, s.t. flow balance.

machine

machine

machine machine

Basic idea: Label propagation

= [teratively move nodes to be with the plurality of their neighbors:
= But how to maintain balance?

= Label = machine |
machine

V Modification! Figure out who wants to move.
1 _if P13 people want to move from 1to 3.
[/

Constraints 4
\—<A//’ \i\\\icw only Z13 people move, s.t. flow balance.

machine A\

machine

V

machine machlne

Balance via Linear Program

- Greedily maximize edge locality with constraints (max/min sizes S;,Ti):

L Solution: number of people to move fromitoj.
J
) Cumulative gain from moving = people (ordered by co-location gain).

fij(xij)

(piecewise-linear concave!)

Balance via Linear Program

- Greedily maximize edge locality with constraints (max/min sizes S;,Ti):

L Solution: number of people to move fromitoj.
) Cumulative gain from moving = people (ordered by co-location gain).

T — |Vil, Vi
Pz'ja \V/Z,]

> izi(Tij — Zjs)
SCij

IAIA
VA4

Si — Vi
m)?XZ fij (.CCZJ) S.t. { ‘ O‘
?’7..7

(Maximize the co-location gain of all (Subject to balance)
machine swaps) (and the number of people available to move)

Balance via Linear Program

- Greedily maximize edge locality with constraints (max/min sizes S;,Ti):

L Solution: number of people to move fromitoj.
) Cumulative gain from moving = people (ordered by co-location gain).

max » fi;(%ij) nd oWl s ey =) R R
ey 0 < Xij < ISl T, g
(Maximize the co-location gain of all (Subject to balance)
machine swaps) (and the number of people available to move)

* Linear Program: n=78 machines => 12k variables / 400k constraints

; :
So= Vil = 2L (T — i) = S P
max) | zij S.t. < 0 < Tij < Fij, Vi3
©,] L —QijkTij + Zij < bz’jka Vi, g, k

Balance via Linear Program

* Summary of algorithm:

= Ste
= Ste
= Ste

0 1: Figure out who wants to move

D 2: Solve LP to decide who can move without breaking balance

D 3: Move those people

Balance via Linear Program

* Summary of algorithm:
- Step 1: Figure out who wants to move
= Step 2: Solve LP to decide who can move without breaking balance

= Step 3: Move those people

Step 2is the contribution compared to ordinary Label Prop.

What about geography?

facebook

Initialization using geography

= Possible to do much better than random with Facebook, using geography.

Initialization using geography

= Possible to do much better than random with Facebook, using geography.
- Spatial model of small-world networks (for routing): Kleinberg 2000
- Validation: Liben-Nowell et al. 2005; Backstrom, Sun, Marlow 2010.

* Friendship probability as a function of rank-distance:

Number of Friends at Different Ranks

0.1 —

— : — 7 : —
Total connections at ranks ———]
Best Fit (rank+104) 1

-0.95

0.01 [

0.001

0.0001

N L P | L N P | L L P | L N P | N N N
10 100 1000 10000 100000 1e+06
Rank

- Backstrom, Sun, Marlow 2010

Initialization using geography
- [P datareveals geographic location of users:

- 1,000,000,000 users mapped to 700,000 cities

Initialization using geography
- [P datareveals geographic location of users:

- 1,000,000,000 users mapped to 700,000 cities

- Grow equi-population balloons around population centers.

Initialization using geography
- [P datareveals geographic location of users:

- 1,000,000,000 users mapped to 700,000 cities

- Grow equi-population balloons around population centers.

Results: Iteration convergence

= Geographicinitialization ‘converges’ within 1 step

Facebook (n=800m, |E|=68b)

o

= —— Geo
= —6— Random
O 9O _| * = restrained
o o
®

©
S
(b]
o < _|
C O
je
LR
LL

*
o _|
o

o—
— —

Results: Iteration convergence

= Geographicinitialization ‘converges’ within 1 step

- Random initialization slow to start when: avg degree > # partitions
Use ‘restraint’. only move big gainers (*s below)

Facebook (n=800m, |E|=68b)

—o— Geo

—6— Random
* = restrained

—o— Geo

—6— Random
* = restrained

00 02 04 06 08 1.0
| I I
*
*

Fraction of edges local
Fraction of nodes moving

00 02 04 06 08 1.0

:

Fraction of edges local
00 02 04 06 08 1.0

= Geographicinitialization ‘converges’ within 1 step

- Random initialization slow to start when: avg degree > # partitions
Use ‘restraint’. only move big gainers (*s below)

= L) partitioning quality not so dependent on # partitions:

BLP exploiting primarily local structure.

Facebook (n=800m, |E|=68b)
—o— Geo S— —— Geo
—6— Random | 2 —6— Random
* = restrained | 'S o _| * = restrained
O O
U
£
[
w—
Od—
S
* "gg_
. L
o _|
T P
@il 2:-3 4 5 6 8 4 5 6 7 8
lteration

lteration

Fraction of edges local

04 06 08 10
I

0.2

0.0

Results: Iteration convergence

LiveJournal (n=4.8m, |E|=42.8m)

—e— 20 shards

lteration

40
60
—e— 80
—— 100
BN |
0O 2 4 o6 8 10 12

Fraction of nodes moving

~—

04 06 0.8

0.2

0.0

20 shards
40

60

80

100

lteration

Results: Machine adjacency matrix

Random Initialization + Prop

* Random initialization + 8 step prop "
= Geographicinitialization ONLY gf’o: WWW
- Geographic +1 step prop %Z_ T SO TRIARS, O ¢ VN VRP SR
32— —— Geo + Prop
- Targeting n=78 machines: o —— Random + Prop
2 racks of 39, visible as blocks "1 % 30 40 50 60 70 78

‘People You May Know’

- PYMK =‘People You May Know’

- Ranked suggestion of friends-of-friends (FoFs) as friends.

- Average user has 40k FoFs, widely distributed.
- Ranks 145,000,000 suggestions per second.

= Graph distributed across 78 machines
with 72GB RAM each.

ID 24

Me =D #3

Friends IDs: 24, 54, 4, 30, 8

v
ID 54 ID 4

XY

ID 30 ID 8

é

Friends of Friends

‘People You May Know’

- PYMK =‘People You May Know’
- Ranked suggestion of friends-of-friends (FoFs) as friends.

- Average user has 40k FoFs, widely distributed.

Me =ID #3
Friends IDs: 24, 54, 4, 30, 8

- Ranks 145,000,000 suggestions per second.

= Graph distributed across 78 machines

with 72GB RAM each. (

Want to shard so that
my friends on same machine as me!

C D2 ID 8 >

é

Friends of Friends

Results: PYMK request concentration

= Median number of machines hit per query reduced from 60 to 2.

o
o —e— base balloon —e— propagated
T
g =
o
3 !
=4 O
o S —
= =
(=
(&)
®© <
g < —
Y o
[
> & _
Dt o
o
(D_ —
o

| I I I I I I Pl
R OR 20 R B0 S N A O 5 O SN6 0 S T

k, machines

Results: PYMK request concentration

- Median number of machines hit per query reduced from 60 to 9.

o
o —e— Dbase balloon —e— propagated
T o
U e
() o
3 !
25 (o)
O S —
£ o
i
(@]
(4] <
= 2=
¢ o
Il
i o
Dt o
o
O_]
o

| I I I I I I el
R O B2 (SR 5 () 1 O S5 (R & O S S O R

k, machines

Results: PYMK request concentration

- Median number of machines hit per query reduced from 60 to 9.

o
S | —e— base balloon —e— propagated
3 8_
Sa%C T
4 (o)
O S —
£ o
(e
(@]
o <
E S —
¢ o
Il
i o
Dt o
o
O__
= I I I I I I I |
0 10 20 30 40 50 60 70 77
k, machines

- Query time: What about overhead? Faster or slower?

Results: Query time / network traffic

- Median number of machines hit per query reduced from 60 to 9.

= Query time reduced by 49%, traffic reduced by 63%:

Query time Network traffic

B — S —
’g ~—
o - A O

~— m —
g \Jf\ = f\
2 3 W ©
> o — ()
. R e

)

E o @
o> B < 8 |
o %_) o ."““a
£ Q- S ~
S £
£ <l —e— base balloon —e— propagated] —e— base balloon —e— propagated

[S e e O S R e [B I e e |
0 6 12 18 24 30 36 42 48 54 60 66 72 0 6 12 18 24 30 36 42 48 54 60 66 72

hour hour

Conclusions and Future work

- Label propagation is fast, we show it can be constrained

= Social networks very clustered, making local algorithms very effective

= Geographic metadata very useful

- Sharding greatly improves distributed graph computations such as PYMK

