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Brief note on references: 
This talk does not include references to literature, which are numerous and important. 
Most (but not all) references are included in the arXiv paper: arxiv.org/abs/1608.00607 

 

http://arxiv.org/abs/1608.00607


• since a single stochastic generative model can generate many 
networks, the model itself corresponds to a set of networks.

• and since the generative model itself is some combination or 
composition of random variables, a random graph model is a set of 
possible networks, each with an associated probability, i.e., a distribution.

this talk:  
configuration models: uniform distributions over networks w/ fixed deg. seq.

• a stochastic generative model is also just a recipe: 
choose parameters→draw a network

• a generative model is just a recipe: 
choose parameters→make the network

Stochastic models, sets, and distributions



Why care about random graphs w/ fixed degree sequence?
Since many networks have broad or peculiar degree sequences, 
these random graph distributions are commonly used for:

Can a particular network’s properties be 
explained by the degree sequence alone?

Hypothesis testing:

Modeling:
How does the degree distribution affect the 
epidemic threshold for disease transmission?

Null model for Modularity, Stochastic Block Model:
Compare an empirical graph with (possibly) community structure 
to the ensemble of random graphs with the same vertex degrees.
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Stub Matching to draw from the config. model

the standard algorithm:  
draw from the distribution by sequential “Stub Matching”

1. initialize each node n with kn half-edges or stubs. 
2. choose two stubs uniformly at random and join to form an edge.

~k = {1, 2, 2, 1}
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Stub Matching to draw from the config. model

draw
 #1

draw
 #2
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Are these two different networks? or the same network?

The rest of this talk: the answer matters.
Are stubs distinguishable or not?



The distribution according to stub-matching

When we draw a graph using stub matching, 
this is the set of graphs that we uniformly sample.

8 of the graphs are simple, while the other 7 
have self-loops or multiedges.

We therefore say that stub matching uniformly 
samples space of stub-labeled loopy multigraphs.

Note, however, that this is not a uniform 
sample over adjacency matrices (rows).
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The importance of uniform distributions
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goal: provably uniform sampling for all eight spaces: 
loopy{0,1} x multigraph{0,1} x {stub-,vertex-}
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remove stub labels
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remove vertex labels
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Choosing a space for your configuration model
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example: Are loops reasonable? Would a loop make sense?  [tennis matches: no | author citations: yes]



stub matching samples uniformly from stub-labeled loopy multigraphs

Sampling from configuration models

NB: Sampling is easy. Provably uniform sampling is not!

for other spaces, define a Markov chain over the “graph of graphs” G 
→each vertex is a graph, and directed edges are “double-edge swaps”

swap this way or the other way



Markov chains for uniform sampling
Prove that: 

• the transition matrix is doubly stochastic (G is regular)  
• the chain is irreducible (G is strongly connected) 
• the chain is aperiodic (G is aperiodic; gcd of all cycles is one)

Straightforward for stub-labeled loopy multigraphs. 
Choose two edges uniformly at random and swap them. Accept all swaps and treat each 
resulting graph as a sample from the U distribution. (Each node in G has degree m-choose-2.)

Prove that: 
• the transition matrix is doubly stochastic 
• the chain is irreducible 
• the chain is aperiodic

Easy for stub-labeled multigraphs. 
Choose two edges uniformly at random and swap them. Reject swaps that create a self-loop 
and resample the current graph. (Think of any “rejected swap” as a self-loop in G.)

Easy for simple graphs. 
Choose two edges uniformly at random and swap them. Reject swaps that create a self-loop or 
multiedge and resample the current graph. (Again, treat “rejected swaps” as a self loops in G.)



Markov chains for uniform sampling
For vertex-labeled graphs, we inherit the strong 
connectedness of G as well as its aperiodicity.

However, ensuring that the Markov chain has a uniform distribution as 
its stationary distribution requires that we adjust transition probabilities.

These asymmetric modifications to transition probabilities depend on 
the number of self-loops and multiedges in the current state. 

a b

unadjusted 
transitions 

P = 1/3, 2/3

adjusted 
transitions 
P = 1/2,1/2

decrease outflow (and increase resampling) 
of graphs with multiedges or self-loops.Intuition:



Stub-labeled loopy graphs: not connected

counterexample: no double-edge swap connects these two graphs!

but see Nishimura 2017 (arxiv:1701.04888) - The connectivity of graphs of graphs with self-loops and a given degree sequence

http://arxiv.org/abs/1701.04888
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Do {stub labels, self-loops, multiedges} matter for how we sample CMs?     yes

Do {stub labels, self-loops, multiedges} matter in applications of CMs?     next…

→hypothesis testing →null model for modularity

showed that these spaces are far from 
equivalent, even in thermodynamic lim.

introduced (and just outlined) 
provably uniform sampling methods.



Do barn swallows tend to associate 
with other swallows of similar color?

Data: bird interactions, bird colors.

Compute color assortativity  
[correlation over edges] 

Hypothesis testing
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This should be modeled as a vertex-labeled multigraph.

Choose a graph space for barn swallows



Assortative pairing of barn swallows
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note: for simple graphs 
and statistics based on 

the graph adjacency matrix, 
stub-labeled  vertex-labeled≡

Uniform sampling means we can compare empirical value 
to null distribution to draw scientific conclusions.

The choice of graph space matters—careful choice & sampling can flip conclusions!

Sanity check: 
should be = for simple

NONE of these is centered at zero. 
Correct space is meaningfully different.
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Community Detection

Are there groups of vertices that 
tend to associate with each other 
more than we expect by chance?

Data: collaborations among geometers.

Maximize modularity, e.g.



Coauthorship communities (vertex-labeled multigraph)

Modularity
expected number of edges in a 

random degree-preserving null model

specifically, in the 
stub-labeled loopy multigraph CM

Generic Modularity

expected number of edges in any 
random degree-preserving null model
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same community detection algorithm, same initial state, different results



Advanced edge swaps

required for graph-of-graphs 
irreducibility in directed networks

reversing a directed triangle 3 edge swapconnectivity preserving edge swapa b c

useful if you wish to sample only 
networks that have a fixed number 

of connected components

reversing a directed triangle 3 edge swapconnectivity preserving edge swapa b c

other swaps have been proposed, 
e.g. to improve mixing time

reversing a directed triangle 3 edge swapconnectivity preserving edge swapa b c

Proofs, samplers, the history of the configuration model, and applications in the paper



The point: graph spaces & stub labels matter, in theory and in practice. 

Recognizing this exposes a number of unrecognized & unsolved problems. 

Provably uniform sampling methods exist—some have existed for decades!



danlarremore.com/configuration models

Johan UganderBailey Fosdick Joel Nishimura

Configuring Random Graph Models with Fixed Degree Sequences
Fosdick, Larremore, Nishimura, Ugander. To Appear in SIAM Review. 

arxiv.org/abs/1608.00607

http://danlarremore.com/configurationmodels
http://arxiv.org/abs/1608.00607


Thank you
@danlarremore 

larremore@santafe.edu


