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Brief note on references:
This talk does not include references to literature, which are numerous and important.
Most (but not all) references are included in the arXiv paper: arxiv.org/abs/1608.00607



http://arxiv.org/abs/1608.00607

Stochastic models, sets, and distributions

® o generative model is just a recipe:
choose parameters—make the network

¢ a stochastic generative model is also just a recipe:
choose parameters—draw a network

® since a single stochastic generative model can generate many
networks, the model itselt corresponds to a set of networks.

e and since the generative model itselt is some combination or
composition of random variables, a random graph model is a set of
possible networks, each with an associated probability, i.e., a distribution.

this talk:
configuration models: uniform distributions over networks w/ fixed deg. seq.



Why care about random graphs w/ fixed degree sequence”

Since many networks have broad or peculiar degree seguences,
these random graph distributions are commonly used for:

Hypothesis testing:
Can a particular network’s properties be
explained by the degree seqguence alone”?

Modeling:
How does the degree distribution aftect the
epidemic threshold for disease transmission?

Null model for Modularity, Stochastic Block Model:

Compare an empirical graph with (possibly) community structure
to the ensemble of random graphs with the same vertex degrees.



Stub Matching to draw from the config. model
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the standard algorithm:
draw from the distribution by sequential “Stub Matching”

1. initialize each node n with k, half-edges or stubs.
2. choose two stubs uniformly at random and join to form an edge.
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Are these two different networks? or the same network”?
Are stubs distinguishable or not?

The rest of this talk: the answer matters.



The distribution according to stub-matching

When we draw a graph using stub matching,
this is the set of graphs that we uniformly sample.

8 of the graphs are simple, while the other 7
have selt-loops or multiedges.

We therefore say that stub matching uniformly

samples space of stub-labeled loopy multigraphs.

Note, however, that this is not a uniform
sample over adjacency matrices (rows).

stub-labeled



The importance of uniform distributions
remove vertex Iabels/\ Nmove stub labels
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goal: provably uniform sampling for all eight spaces:
loopy{0,1} x multigraph{O,1} x {stub-,vertex-}




Choosing a space for your configuration model

Question 1: loops? Question 3: vertex- or stub-labeled?
stub-labeled
These configurations are . . . A
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vertex-labeled

example: Are loops reasonable” Would a loop make sense”? [tennis matches: no | author citations: yes]



Sampling from configuration models

stub matching samples uniformly from stub-labeled loopy multigraphs

for other spaces, define a Markov chain over the “graph of graphs” G
—each vertex Is a graph, and directed edges are "double-edge swaps”

(u,v), (z,y) ~ (u,2), (v,y) (u,v), (y, ) ~ (u,y), (v, )
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NB: Sampling is easy. Provably uniform sampling is not!



Markov chains for uniform sampling

Prove that:
e the transition matrix is doubly stochastic (G is regular)
e the chain is irreducible (G is strongly connected)
e the chain is aperiodic (G is aperiodic; gcd of all cycles is one)

Straightforward for stub-labeled loopy multigraphs.
Choose two edges uniformly at random and swap them. Accept all swaps and treat each
resulting graph as a sample from the U distribution. (Each node in G has degree m-choose-2.)

Easy for stub-labeled multigraphs.
Choose two edges uniformly at random and swap them. Reject swaps that create a self-loop
and resample the current graph. (Think of any “rejected swap” as a selt-loop in G.)

Easy for simple graphs.
Choose two edges uniformly at random and swap them. Reject swaps that create a self-loop or
multiedge and resample the current graph. (Again, treat “rejected swaps” as a self loops in G.)



Markov chains for uniform sampling

For vertex-labeled graphs, we inherit the strong
connectedness of G as well as its aperiodicity.

However, ensuring that the Markov chain has a unitorm distribution as

its stationary distribution requires that we adjust transition probabillities.
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These asymmetric modifications to transition probabilities depend on
the number of self-loops and multiedges in the current state.

decrease outflow (and increase resampling)

Inturtion: of graphs with multiedges or self-loops.

adjusted
transitions
P=1/2,1/2




Stub-labeled loopy graphs: not connected
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counterexample: no double-edge swap connects these two graphs!

~

but see Nishimura 2017 (arxiv:1701.04888) - The connectivity of graphs of graphs with self-loops and a given degree sequence



http://arxiv.org/abs/1701.04888

Do {stub labels, self-loops, multiedges} matter for how we sample CMs”? yes

showed that these spaces are far from introduced (and just outlined)
equivalent, even in thermodynamic lim. provably uniform sampling methods.

Do {stub labels, self-loops, multiedges} matter in applications of CMs?  next...

O
hypothesis testing null model for modularity
O



Hypothesis testing

Do barn swallows tend to associate
with other swallows of similar color?

Data: bird interactions, bird colors.

Compute color assortativity -
[correlation over edges] g\ e T



Choose a graph space for barn swallows
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[Why? If we interacted today and yesterday, a randomization in
which my today interacts with your yesterday is nonsensical!]

multigraph

This should be modeled as a vertex-labeled multigraph.



Assortative pairing of barn swallows

Stub-labeled Vertex-labeled
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Uniform sampling means we can compare empirical value
to null distribution to draw scientific conclusions.

The choice of graph space matters—careful choice & sampling can flip conclusions!



Are there groups of vertices that
tend to associate with each other
more than we expect by chance” ©

Data: collaborations among geometers.
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Coauthorship communities (vertex-labeled mulii

expected number of edges in a
random degree-preserving null model

Modularity
1 kik,
Q = oM — (Az'j — 2—M7) 5(92’79}’)

specifically, in the
stub-labeled loopy multigraph CM

Generic Modularity
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expected number of edges in any
random degree-preserving null model

same community detection algorithm,

graph)

number of communities

same Initial state, different results

% | | |
- — 1 — T -1 -1 —
o et —-:-__ | | | T | | T
S | | | | | | |
€ o9} * | | | | | |
cE>' | | | |
O

9 0.8+

o

) + |
20 |
Qg7 - | ' | |
S | | | | 1
© 06 | | | | | | |

Q 0.6+ | | | | | 1 i

- | | | | i

= 054 | | L

@ | ' |

v 1

é I | |
&5 0.4 1

2 3 4 5 6 7 8 9 10




Advanced edge swaps

a reversing a directed triangle

/\->/\

b connectivity preserving edge swap

» c 3 edge swap
required for graph-of-graphs > ‘/‘
irreducibility in directed networks

!

other swaps have been proposed,
e.g. to improve mixing time

networks that have a fixed number
of connected components

useful it you wish to sample only ‘/‘

Proofs, samplers, the history of the configuration model, and applications in the paper



The point: graph spaces & stub labels matter, in theory and in practice.
Recognizing this exposes a number of unrecognized & unsolved problems.

Provably uniform sampling methods exist—some have existed tor decades!
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Thank you
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