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Seed set expansion

 Given a graph G=(V, E), goal is to accurately identity
atargetset T c V from a smaller seed setS c T.
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Seed set expansion

 Given a graph G=(V, E), goal is to accurately identity
atargetset T c V from a smaller seed setS c T.
* Applications:
Broadly: ranking on graphs, recommendation systems
« Spam filtering (Wu & Chellapilla '07)
o Community detection (Weber et al. "13)
 Missing data inference (Mislove et al. "14)

« Common methods:
e Semi-supervised learning (Zhu et al. '03)

o Diffusion-based classification
(Jeh & Widom 03, Kloster & Gleich ’14)

e Qutwardness, modularity and more
(Bagrow 08, Kloumann & Kleinberg '14)
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* Applications:
Broadly: ranking on graphs, recommendation systems
« Spam filtering (Wu & Chellapilla '07)
o Community detection (Weber et al. "13)
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« Common methods:
e Semi-supervised learning (Zhu et al. '03)

 Diffusion-based classification
(Jeh & Widom 03, Kloster & Gleich ’14)

« Qutwardness, modularity and more
(Bagrow ‘08, Kloumann & Kleinberg ’14)
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Recall curves for seed set expansion

Kloumann & Kleinberg ‘14
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* Recall curve: true positive rate, as a function of the number
of items returned based on small uniformly random seed set.

* Kloumann & Kleinberg '14 tested many different methods
on data, broadly found Personalized PageRank to be best.
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Recall curves for seed set expansion

Kloumann & Kleinberg ‘14

DBLP Amazon
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/ Neighbors 0.6 = Conductance
0.20 = . / ,
DN-Neighbors ~ _ 0.5= Set-Modularity
0.15 = = Outwardness § 0.4 - Outwardness
— Binomial Prob 0.3= DN-Neighbors

— Set-Modularity - —— —— ’::/ Neighbors

e Conductance

'I/” | N Modularit
0.00 l l l y i i i i i i

0 100 200 300 0O 200 400 600 800 1000 1200 1400
k k

Binomial Prob

* Recall curve: true positive rate, as a function of the number
of items returned based on small uniformly random seed set.

* Kloumann & Kleinberg '14 tested many different methods
on data, broadly found Personalized PageRank to be best.

 Truncated PPR (first K steps) comparable to PPR from K=4.
 Heat Kernel later found comparable to PPR.



Diffusion-based node classification

Classification based on random walk landing probabilities

., probability that a random walk starting in S is at v after k steps.

(7’_{, 7“5, el 7’}){) truncated vector of landing probabilities.

Personalized PageRank and Heat Kernel ranking:

PPR(v) Z(ak)r}é HK (v)

General diffusion score function:

o
score(v) = Z WETY,
k=1



Diffusion-based node classification

* Personalized PageRank and Heat Kernel K .
= two parametric families of linear weights score(v) = Z WETk
k=1

S o L
S~ PPR wi, = o
T~ 0,85 HK  wy = t"/k!
6IO 8IO \100

Length (Kloster & Gleich, ’14)

* Question in this work:
What weights are “optimal” for diffusion-based classification?



The stochastic block model

s NEELR T
C blocks fpﬁrl [poa]
* Focus on C=2 blocks: 1="“Target”, 2="“Other” ﬂ:vf
N1, N2 nodes in blocks ..;-__.p.ou; :;EJE}
Independent edge probabillities: T oy
» Edge probability within a block = pin 856%;3;;55 O
 Edge probabillity across blocks = pout Sgo%§o %%%g%%% O
(Results for C>2 as well, see paper) g%goo@

Model with many names:

* Stochastic Block Model (Holland et al. '83)
e Affiliation Model (Frank-Harary '82)

* Planted Partition Model (Dyer-Frieze '89)



The SBM resolution limit

Find true partition in poly(n) time w.h.p. as n—o :

* Dyer-Frieze '89:
 Condon-Karp '01:
 McSherry '01:

I Pin -
£ Om _

£ O|n _

Dout = O(1)
Dout 2 Q(ﬂ'm)

Oout 2 Q((pout(log ﬂ)/ﬂ)'1/2)




The SBM resolution limit

Find true partition in poly(n) time w.h.p. as n—o :

* Dyer-Frieze '89:
 Condon-Karp '01:
 McSherry '01:

Find partition positively correlated with true partition:

e Coja-Oghlan '06:

I Pin - Pout = 0(1)
f Din - Pout = Q(N-1/2)

f Pin- Pout = Q((pOUt(log n)in) 1)

i Pin - Pout 2 Q((pout/ﬂ)'”Q),
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The SBM resolution limit

Find true partition in poly(n) time w.h.p. as n—o :

o Dyer-Frieze '89:  If pin- pour = O(1) e
» Condon-Karp '01: If pin- pout = Q(n-1/2) “1pout EJE
 McSherry '01:; f Pin- Pout = Q((Pout(lOg N)/N)-1/2) | *J
Find partition positively correlated with true partition: 856%;;55 .
* Coja-Oghlan’06: If pin- pout = Q((pout/Nn)12), SZO%§O@%%C§O%%% o
e Ifand only if (a-b)2 > 2(a+b) (pin = a/n, Pout = D/N): g%o%

* Decelle et al '11: Conjecture and belief propagation numerics
* Mossel etal '12,'13, Massoulié '13, Abbe et al. '14: Proven

Recent extensions:
* More than two blocks (e.g. Neeman-Netrapalli '14)
* Unequal block sizes (e.g. Zhang et al. "16)



The SBM resolution limit

Is block recovery/classification over? No! g I

T, Pin i Pout
» Unsupervised vs. semi-supervised LIRS
* Empirical graphs = SBMs |Pout| 3pin

* Optimal algorithms not practical
 Beyond asymptotic limits, what are decay rates?

Rather than being “problem down” (SBM classification), this talk will
be “method up”: how to tune diffusion weights to find seed sets?

K
score(v) = Z WY,
k=1

Possible variations: Ditfusion weights tfor seed set expansion in
core-periphery models? Latent space models (Hoff et al. 2002)7 Etc.



Diffusion-based classification in SBMs

 SBMs present a natural binary classitication problem.
* Recall notation:
. T , probability that a random walk starting in S is at v after k steps.
. (7“1), 7'y vees 7"}]() truncated vector of landing probabilities.
« Choices of (w1, ..., wxk)define sweep directions through space.
* Optimistically: ria
Target block nodes

Other block nodes




The space of landing probabilities

86TO4 |

3-step Landing prob
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 SBM: 2000 nodes, Target & Other blocks, pin= 0.2, pout = 0.05
* One seed node (uniformly at random from Target set)
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The space of landing probabilities
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 Geometric discriminant function: sweeps through the space
of landing probabilities following vector from b to a.



The space of landing probabilities
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* Fisher discriminant functions: Clearly exist better linear
and quadratic functions. Forward pointer, will return.



| 8e-04

4e-04

2-step Landing prob

0e+00

* Focus on deriving optimal Geometric discriminant function first.
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Geometric discriminant functions

Letr=(ry,...,rx) be the landing probabilities of a node
_eta=(a,...,ax) be the Target class centroid

etb = (by,.. bK) be the Other class centroid

Then f(r) = (a —b)’r is the geometric discriminant function.

Notice: f(r) increases when r moves in direction of a - b.
Can classify nodes based on thresholds of f(r).
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Personalized PageRank is “optimal”

 Main Theorem (informal version).
For 2-block SBM with equal sized blocks and edge densities Pin, Pout:

k
(pz'n — pout)
ap — b =

Pin =+ Pout /’ K
and the optimal geometric classifier is therefore: Y ()7,
in — Pou k=1
which is PPR(1) with av. = (p L t).
Pin + Pout

8e-04
L 4

4e|04
P
P
P
.
’
.
,
.
.
.

3-step Landing prob

l
.

0e+00

| | | | |
0e+00 4e-04 8e-04
2-step Landing prob



Personalized PageRank is “optimal”

 Main Theorem (informal version).
For 2-block SBM with equal sized blocks and edge densities Pin, Pout:

k
ap — bk _ (pz'n T pout)
Pin T Pout / K
and the optimal geometric classifier is therefore: Y ()7,

in — FPou k=1
which is PPR(1) with av. = (p L t).
Pin + Pout

l
.

 Two main parts: .

1. Centroids a, b concentrate on quantities
determined by the solution to a linear
recurrence relation.

2. That linear recurrence relation can be .
solved and yields PPR.
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PPR is “optimal”: Proof idea

 Part 1: Concentration of landing probabilities

Lemma 1. For any €¢,0 > 0, there is an n sufficiently large such that the random
landing probabilities (a1, ..., dx ) and (ZA)l, b i) for a uniform random walk on
G, starting in the seed block satisty the following conditions with probability
at least 1 — 0 for all £ > 0:

| Ay, Ap

N 1 — 1 d 1
ake_( E)Ak‘FBk’( +€)Ak‘|‘Bk_ an (1)
A i Bk Bk |

N 1 — 1 2
bk c -( 6) Ak —|—Bk7( —|_€) Ak —|—Bk_ ) ( )

where A;, B are the solutions to the matrix recurrence relation

A = N(DinAk—1 + Pout Br—1)
Bk — N(poutAk—l ‘|‘pian—1)7

with AO — 1, BO = 0.



PPR is “optimal”: Proof idea

 Part 1: Concentration of landing probabilities

Lemma 1. For any €¢,0 > 0, there is an n sufficiently large such that the random
landing probabilities (a1, ..., dx ) and (ZA)l, b i) for a uniform random walk on
G, starting in the seed block satisty the following conditions with probability
at least 1 — 0 for all £ > 0:

_ and (1)

Nay € (1—€)A

leke_(l—e) k(14 (2)

where A;, B are the solutions to the matrix recurrence relation

{ A = N(pinAk—1 + Pout Br—1)

Bk — N(poutAk—l +pian—1)7

with AO — 1, BO = 0.

« Ay, By interpretable as length-k walk count to nodes in block 1 vs. 2.
* For large n, block walk counts increase by factors of ~E[degree].



More general SBMs

* For SBMs with C>2 blocks and/or with arbitrary P:
 Seed set expansion asks: identify nodes in a target block set.
* With conditions on equal expected degrees, PPR(!).
* Without conditions, still:

* Asymptotically optimal weights for geometric classification
still obtainable from solutions to a matrix recurrence relation.

T %29(9

¥ %2019 € %30|9 ¢ %29(]

block 1 _block 2 block 3 block 4



Empirical vs. theoretical centroids

e 2048-node, 4-block SBM, empirical class centroids vs. theory:

| | | | | | |

® ® cmpirical centroids |

- a, Target blocks 3E—3
- b, Other blocks

= = predicted centroids

1E—5 T T T T T T T

¥ %2019 € X30|9 ¢ X20|9 T %20|q

block 1 block 2 block 3 block 4

Error

1E—6 | | | | | | | ‘1



Empirical vs. theoretical centroids

e 2048-node, 4-block SBM, empirical class centroids vs. theory:

. 3E—3 ® ® cmpirical centroids ||
a, Target blocks = = predicted centroids
- b, Other blocks
2E—3
&
z 1E—-3
. v
éz_ - ‘0“’ 1E—H T T T T T T T
" block 1 block 2 bIock3 block 4 “."‘ § /\
1]
From matrix : 1E_6 | | | | | | | ‘1

recurrence relation



Theories of graph diffusion

e (Other motivations for PPR:
 Random Surfer Model (Brin-Page '98)
 (Cheeger inequalities for PPR, HK (Andersen et al ‘06, Chung '09)
e |ocal spectral algorithm with regularization (Mahoney et al. '12)

* Our work shows PPR can be derived as “optimal” geometric classifier.
Pin _pout)
Pin _I_pout .

* Also motivates how to choose PPR «, as a = (



Theories of graph diffusion

Other motivations for PPR:

 Random Surfer Model (Brin-Page '98)

 (Cheeger inequalities for PPR, HK (Andersen et al ‘06, Chung '09)
e |ocal spectral algorithm with regularization (Mahoney et al. '12)

Our work shows PPR can be derived as “optimal” geometric classifier.
Pin _pout)
Pin _I_pout .

Also motivates how to choose PPR «, as a = (

Most importantly: also opens door to methods beyond PPR.
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PPR is “optimal” in a narrow sense
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e Discriminant functions that model higher moments of point clouds”



Fisher discriminant functions
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Discriminant functions that model higher moments of point clouds.



Fisher discriminant functions

 Letzbe the latent class of each node.
e (Capture (mean, variance) of class point clouds:

Pr(r|z = 1) o [Sa| 3 exp (—%(r a7 — a))

1

505 (b))

Pr(r|z =0) oc |2~ 2exp<

* Log-likelihood ratio as discriminant function:

. Pr(rl]z=1)Pr(z = 1)
g(r) = log Pr(r|z = 0)Pr(z = 0)

~04

8e

4e-04

3-step Landing prob
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Fisher discriminant functions

* Three approaches:

General :  go(r) o (X, 'a — Zb_lb)T r+2r’ (3, =3, Y)r
Assume ¥, =Y, =%: qi(r) x T ' (a—b)'r
Assume X, =X, =1: go(r)x (a—b)'r

e We call the first two methods

<
QuadSBMRank, LinSBMRank. -
O ©
* Perhaps reasonable to assume > e
: : S 1 Tt
equal covariances; effective. S e, O
on of 3 3. HEEE e 1(F)
* PPRfollows from an assumption of a 3. el 1
uniform variance, no covariance. % N
™m» g2 (I‘)
S go(r)
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0e+00 4e-04 8e-04

2—-step Landing prob



Fisher discriminant functions

* Three approaches:

General :  go(r) o (X, 'a — Zb_lb)T r+2r’ (3, =3, Y)r

Assume ¥, =Y, =%: qi(r) x T ' (a—b)'r

Assume X, =X, =1: go(r)x (a—b)'r

e \We call the first two methods
QuadSBMRank, LinSBMRank.

* Perhaps reasonable to assume
equal covariances; effective.

 PPR follows from an assumption of
uniform variance, no covariance.,

 Open challenge: Possible to
show asymptotic normality and
characterize covariance matrices?
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Evaluation: recall curves

 SBM with 2 blocks, 64 nodes/block, 1 seed node.
* Recall that Belief Propagation reaches resolution limit.

1.0 --- (1.0) Lin-SBMRank @ o,
(1.0) Quad-SBMRank @ «,
0.75 — (1.0) Belief Prop.
S --- (1.0) Quad-SBMRank @ o,
g 0.5 (1.0) Lin-SBMRank @ a,
— (0.93) Heat Kernel @ 2
0.25 (0.92) PageRank @ o,
--- (0.92) PageRank @ «a,,,
00 0 64 128

* Easy instance (pin>> Pout):
* Everything does well.



Evaluation: recall curves

 SBM with 2 blocks, 64 nodes/block, 1 seed node.
* Recall that Belief Propagation reaches resolution limit.

1.0 | — (0.9) Belief Prop.
--- (0.83) Lin-SBMRank @ «,,
0.75 — -+« (0.83) Lin-SBMRank @ o,
= (0.82) Quad-SBMRank @ o,
é 0.5 B --- (0.82) Quad-SBMRank @ «,,,
(0.60) PageRank @ «,
0.25 7 --- (0.6) PageRank @ o,
0ol — (0.58) Heat Kernel @ 2

0 64 128

* Hard instance...
* PPR/HK lost all recall, LiInSBMRank and QuadSBMRank near BP.



Evaluation: recall curves

 SBM with 2 blocks, 64 nodes/block, 1 seed node.
* Recall that Belief Propagation reaches resolution limit.

1.0 (0.72) Lin-SBMRank @ «,
--- (0.71) Lin-SBMRank @ «,
0.75 (0.71) Quad-SBMRank @ o,
% . --- (0.69) Que.ld-SBMRank @ a,,
S — (0.66) Belief Prop.
(0.58) PageRank @ «,
0.25 --- (0.58) PageRank @ o,
0 — (0.57) Heat Kernel @ 2
0 64 128

* Even harder instance...
* LinSBMRank and QuadSBMRank outperforming BP by a hair...?



Evaluation: recall curves

 SBM with 2 blocks, 64 nodes/block, 1 seed node.
* Recall that Belief Propagation reaches resolution limit.

1.0

0.75

0.5

recall

0.25

0.0

0 64 128

* Impossible (Pin = Pout):
* Nothing works.

(0.56) Quad-SBMRank @ «,
(0.56) Lin-SBMRank @ o,
(0.55) PageRank @ «,

(0.55) Heat Kernel @ 2
(0.53) Lin-SBMRank @ o

(0.53) PageRank @ «

(0.53) Belief Prop.
(0.53) Quad-SBMRank @ o

est

est

est




Evaluation: resolution limit

* Pearson correlation r between true partition and inferred partition.

 Empirically, we see LInSBMRank and QuadSBMRank get very close
to resolution limit (dotted line), with slower decay rate.

0.75

0.25

0.0
0.0 0.25 0.5 0.75 1.0

Cout/ Cin

PPR, HK, , QuadSBMRank, BP



Conclusions

Pin — Pout
Pin +pout
discriminant function for balanced 2-block SBM.

Geometric discriminant functions for more general block models
follow from recurrence relation.

Landing probabilities are correlated; correcting for higher moments in
the space of landing probabilities greatly improves classification.

In practice: fit GMMs in space of landing probs.

A new perspective on diffusion-based ranking 0.\ © %
that can hopefully open new doors. s OO

Personalized PageRank with a = ( ) IS optimal geometric
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Open directions

Model covariance of landing probabilities”

Currently requires at least ~logarithmic degrees (we think);
possible to derive weights for bounded degree SBMs”?

Better classifiers in the space of landing probabillities for
other random walks” (Non-backtracking, etc.)

Not just SBM? Optimal weights for dcSBM, core-periphery,
Hoff latent space model, etc, etc.

ST O
Slow decay beyond resolution limit? AN o0

Pre-print: (N
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