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Abstract

As datasets capturing human choices grow in richness and scale—particularly in
online domains—there is an increasing need for choice models that escape tra-
ditional choice-theoretic axioms such as regularity, stochastic transitivity, and
Luce’s choice axiom. In this work we introduce the Pairwise Choice Markov
Chain (PCMC) model of discrete choice, an inferentially tractable model that does
not assume any of the above axioms while still satisfying the foundational axiom
of uniform expansion, a considerably weaker assumption than Luce’s choice ax-
iom. We show that the PCMC model significantly outperforms both the Multino-
mial Logit (MNL) model and a mixed MNL (MMNL) model in prediction tasks
on both synthetic and empirical datasets known to exhibit violations of Luce’s
axiom. Our analysis also synthesizes several recent observations connecting the
Multinomial Logit model and Markov chains; the PCMC model retains the Multi-
nomial Logit model as a special case.

1 Introduction

Discrete choice models describe and predict decisions between distinct alternatives. Traditional ap-
plications include consumer purchasing decisions, choices of schooling or employment, and com-
muter choices for modes of transportation among available options. Early models of probabilistic
discrete choice, including the well known Thurstone Case V model [29] and Bradley-Terry-Luce
(BTL) model [7], were developed and refined under diverse strict assumptions about human de-
cision making. As complex individual choices become increasingly mediated by engineered and
learned platforms—from online shopping to web browser clicking to interactions with recommen-
dation systems—there is a pressing need for flexible models capable of describing and predicting
nuanced choice behavior.

Luce’s choice axiom, popularly known as the independence of irrelevant alternatives (IIA), is ar-
guably the most storied assumption in choice theory [20]. The axiom consists of two statements, ap-
plied to each subset of alternatives S within a broader universe U . Let paS = Pr(a chosen from S)
for any S ⊆ U , and in a slight abuse of notation let pab = Pr(a chosen from {a, b}) when there are
only two elements. Luce’s axiom is then that: (i) if pab = 0 then paS = 0 for all S containing a and
b, (ii) the probability of choosing a from U conditioned on the choice lying in S is equal to paS .

The BTL model, which defines pab = γa/(γa + γb) for latent “quality” parameters γi > 0, satisfies
the axiom while Thurstone’s Case V model does not [1]. Soon after its introduction, the BTL model
was generalized from pairwise choices to choices from larger sets [4]. The resulting Multinomal
Logit (MNL) model again employs quality parameters γi ≥ 0 for each i ∈ U and defines piS , the
probability of choosing i from S ⊆ U , proportional to γi for all i ∈ S. Any model that satisfies
Luce’s choice axiom is equivalent to some MNL model [21].

One consequence of Luce’s choice axiom is strict stochastic transitivity between alternatives: if
pab ≥ 0.5 and pbc ≥ 0.5, then pac ≥ max(pab, pbc). A possibly undesirable consequence of
strict stochastic transitivity is the necessity of a total order across all elements. But note that strict
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stochastic transitivity does not imply the choice axiom; Thurstone’s model exhibits strict stochastic
transitivity.

Many choice theorists and empiricists, including Luce, have noted that the choice axiom and stochas-
tic transitivity are strong assumptions that do not hold for empirical choice data [10, 14, 15, 28, 30].
A range of discrete choice models striving to escape the confines of the choice axiom have emerged
over the years. The most popular of these models have been Elimination by Aspects [31], mixed
MNL (MMNL) [6], and nested MNL [24]. Inference is practically difficult for all three of these
models [17, 25]. Additionally, Elimination by Aspects and the MMNL model also both exhibit the
rigid property of regularity, defined below.

A broad, important class of models in the study of discrete choice is the class of random utility
models (RUMs) [4, 22]. A RUM affiliates with each i ∈ U a random variableXi and defines for each
subset S ⊆ U the probability Pr(i chosen from S) = Pr(Xi ≥ Xj ,∀j ∈ S). An independent RUM
has independent Xi. RUMs assume neither choice axiom nor stochastic transitivity. Thurstone’s
Case V model and the BTL model are both independent RUMs; the Elimination by Aspects and
MMNL models are both RUMs. A major result by McFadden and Train establishes that for any
RUM there exists a MMNL model that can approximate the choice probabilities of that RUM to
within an arbitrary error [25], a strong result about the generality of MMNL models. The nested
MNL model, meanwhile, is not a RUM.

Although RUMs need not exhibit stochastic transitivity, they still exhibit the weaker property of
regularity: for any choice sets A, B where A ⊆ B, pxA ≥ pxB . Regularity may at first seem
intuitively pleasing, but it prevents models from expressing framing effects [14] and other empirical
observations from modern behavior economics [30]. This rigidity motivates us to contribute a new
model of discrete choice that escapes historically common assumptions while still furnishing enough
structure to be inferentially tractable.

The present work. In this work we introduce a conceptually simple and inferentially tractable
model of discrete choice that we call the PCMC model. The parameters of the PCMC model are
the off-diagonal entries of a rate matrix Q indexed by U . The PCMC model affiliates each subset
S of the alternatives with a continuous time Markov chain (CTMC) on S with transition rate matrix
QS , whose off-diagonal entries are entries of Q indexed by pairs of items in S. The model defines
piS , the selection probability of alternative i ∈ S, as the probability mass of alternative i ∈ S of the
stationary distribution of the CTMC on S.

The transition rates of these CTMCs can be interpreted as measures of preferences between pairs
of alternatives. Special cases of the model use pairwise choice probabilities as transition rates,
and as a result the PCMC model extends arbitrary models of pairwise choice to models of set-
wise choice. Indeed, we show that when the matrix Q is parameterized with the pairwise selection
probabilities of a BTL pairwise choice model, the PCMC model reduces to an MNL model. Recent
parameterizations of non-transitive pairwise probabilities such as the Blade-Chest model [8] can be
usefully employed to reduce the number of free parameters of the PCMC model.

Our PCMC model can be thought of as building upon the observation underlying the recently in-
troduced Iterative Luce Spectral Ranking (I-LSR) procedure for efficiently finding the maximum
likelihood estimate for parameters of MNL models [23]. The analysis of I-LSR is precisely analyz-
ing a PCMC model in the special case where the matrix Q has been parameterized by BTL. In that
case the stationary distribution of the chain is found to satisfy the stationary conditions of the MNL
likelihood function, establishing a strong connection between MNL models and Markov chains. The
PCMC model generalizes that connection.

Other recent connections between the MNL model and Markov chains include the work on Rank-
Centrality [26], which employs a discrete time Markov chain for inference in the place of I-LSR’s
continuous time chain, in the special case where all data are pairwise comparisons.

Separate recent work has contributed a different discrete time Markov chain model of “choice sub-
stitution” capable of approximating any RUM [3], a related problem but one with a strong focus on
ordered preferences. Lastly, recent work by Kumar et al. explores conditions under which a prob-
ability distribution over discrete items can be expressed as the stationary distribution of a discrete
time Markov chain with “score” functions similar to the “quality” parameters in an MNL model
[19].
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The PCMC model is not a RUM, and in general does not exhibit stochastic transitivity, regularity,
or the choice axiom. We find that the PCMC model does, however, obey the lesser known but
fundamental axiom of uniform expansion, a weakened version of Luce’s choice axiom proposed
by Yellott that implies the choice axiom for independent RUMs [32]. In this work we define a
convenient structural property termed contractibility, for which uniform expansion is a special case,
and we show that the PCMC model exhibits contractibility. Of the models mentioned above, only
Elimination by Aspects exhibits uniform expansion without being an independent RUM. Elimination
by Aspects obeys regularity, which the PCMC model does not; as such, the PCMC model is uniquely
positioned in the literature of axiomatic discrete choice, minimally satisfying uniform expansion
without the other aforementioned axioms.

After presenting the model and its properties, we investigate choice predictions from our model on
two empirical choice datasets as well as diverse synthetic datasets. The empirical choice datasets
concern transportation choices made on commuting and shopping trips in San Francisco. Inference
on synthetic data shows that PCMC is competitive with MNL when Luce’s choice axiom holds,
while PCMC outperforms MNL when the axiom does not hold. More significantly, for both of the
empirical datasets we find that a learned PCMC model predicts empirical choices significantly better
than a learned MNL model.

2 The PCMC model a b

c

a b

b c

a c

Figure 1: Markov chains on choice
sets {a, b}, {a, c}, and {b, c},
where line thicknesses denote tran-
sition rates. The chain on the
choice set {a, b, c} is assembled
using the same rates.

A Pairwise Choice Markov Chain (PCMC) model defines the
selection probability piS , the probability of choosing i from
S ⊆ U , as the probability mass on alternative i ∈ S of
the stationary distribution of a continuous time Markov chain
(CTMC) on the set of alternatives S. The model’s parame-
ters are the off-diagonal entries qij of rate matrix Q indexed
by pairs of elements in U . See Figure 1 for a diagram. We
impose the constraint qij + qji ≥ 1 for all pairs (i, j), which
ensures irreducibility of the chain for all S.

Given a query set S ⊆ U , we constructQS by restricting the rows and columns ofQ to elements in S
and setting qii = −

∑
j∈S\i qij for each i ∈ S. Let πS = {πS(i)}i∈S be the stationary distribution

of the corresponding CTMC on S, and let πS(A) =
∑
x∈A πS(x). We define the choice probability

piS := πS(i), and now show that the PCMC model is well defined.
Proposition 1. The choice probabilities piS are well defined for all i ∈ S, all S ⊆ U of a finite U .

Proof. We need only to show that there is a single closed communicating class. Because S is finite,
there must be at least one closed communicating class. Suppose the chain had more than one closed
communicating class and that i ∈ S and j ∈ S were in different closed communicating classes. But
qij+qji ≥ 1, so at least one of qij and qji is strictly positive and the chain can switch communicating
classes through the transition with strictly positive rate, a contradiction.
While the support of πS is the single closed communicating class, S may have transient states
corresponding to alternatives with selection probability 0. Note that irreducibility argument needs
only that qij + qji be positive, not necessarily at least 1 as imposed in the model definition. One
could simply constrain qij + qji ≥ ε for some positive ε. However, multiplying all entries of Q by
some c > 0 does not affect the stationary distribution of the corresponding CTMC, so multiplication
by 1/ε gives a Q with the same selection probabilities.

In the subsections that follow, we develop key properties of the model. We begin by showing how
assigning Q according a Bradley-Terry-Luce (BTL) pairwise model results in the PCMC model
being equivalent to BTL’s canonical extension, the Multinomial Logit (MNL) set-wise model. We
then construct a Q for which the PCMC model is neither regular nor a RUM.

2.1 Multinomial Logit from Bradley-Terry-Luce

We now observe that the Multinomial Logit (MNL) model, also called the Plackett-Luce model,
is precisely a PCMC model with a matrix Q consisting of pairwise BTL probabilities. Recall that
the BTL model assumes the existence of latent “quality” parameters γi > 0 for i ∈ U with pij =
γi/(γi + γj),∀i, j ∈ U and that the MNL generalization defines piS ∝ γi,∀i ∈ S for each S ⊆ U .
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Proposition 2. Let γ be the parameters of a BTL model on U . For qji = γi
γi+γj

, the PCMC
probabilities piS are consistent with an MNL model on S with parameters γ.

Proof. We aim to show that πS = γ
||γ||1 is a stationary distribution of the PCMC chain: πTSQS = 0.

We have:

(πTSQS)i =
1

||γ||1

∑
j 6=i

γjqji − γi(
∑
j 6=i

qji)

 =
γi
||γ||1

∑
j 6=i

γj
γi + γj

−
∑
j 6=i

γj
γi + γj

 = 0, ∀i.

Thus πS is always the stationary distribution of the chain, and we know by Proposition 1 that it is
unique. It follows that piS ∝ γi for all i ∈ S, as desired.

Other parameterizations of Q, which can be used for parameter reduction or to extend arbitrary
models for pairwise choice, are explored section 1 of the Supplementary material.

2.2 A counterexample to regularity

The regularity property stipulates that for any S′ ⊂ S, the probability of selecting a from S′ is at
least the probability of selecting a from S. All RUMs exhibit regularity because S′ ⊆ S implies
Pr(Xi = maxj∈S′ Xj) ≥ Pr(Xi = maxj∈S Xj). We now construct a simple PCMC model which
does not exhibit regularity, and is thus not a RUM.

Consider U = {r, p, s} corresponding to a rock-paper-scissors-like stochastic game where each
pairwise matchup has the same win probability α > 1

2 . Constructing a PCMC model where the
transition rate from i to j is α if j beats i in rock-paper-scissors yields the rate matrix

Q =

[ −1 1− α α
α −1 1− α

1− α α −1

]
.

We see that for pairs of objects, the PCMC model returns the same probabilities as the pairwise
game, i.e. pij = αwhen i beats j in rock-paper-scissors, as pij = qji when qij+qji = 1. Regardless
of how the probability α is chosen, however, it is always the case that prU = ppU = psU = 1/3. It
follows that regularity does not hold for α > 2/3.

We view the PCMC model’s lack of regularity is a positive trait in the sense that empirical choice
phenomena such as framing effects and asymmetric dominance violate regularity [14], and the
PCMC model is rare in its ability to model such choices. Deriving necessary and sufficient con-
ditions on Q for a PCMC model to be a RUM, analogous to known characterization theorems for
RUMs [11] and known sufficient conditions for nested MNL models to be RUMs [5], is an interest-
ing open challenge.

3 Properties

While we have demonstrated already that the PCMC model avoids several restrictive properties that
are often inconsistent with empirical choice data, we demonstrate in this section that the PCMC
model still exhibits deep structure in the form of contractibility, which implies uniform expansion.
Inspired by a thought experiment that was posed as an early challenge to the choice axiom, we define
the property of contractibility to handle notions of similarity between elements. We demonstrate that
the PCMC model exhibits contractibility, which gracefully handles this thought experiment.

3.1 Uniform expansion

Yellott [32] introduced uniform expansion as a weaker condition than Luce’s choice axiom, but one
that implies the choice axiom in the context of any independent RUM. Yellott posed the axiom of
invariance to uniform expansion in the context of “copies” of elements which are “identical.” In the
context of our model, such copies would have identical transition rates to alternatives:
Definition 1 (Copies). For i, j in S ⊆ U , we say that i and j are copies if for all k ∈ S − i − j,
qik = qjk and qij = qji.
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Yellott’s introduction to uniform expansion asks the reader to consider an offer of a choice of bever-
age from k identical cups of coffee, k identical cups of tea, and k identical glasses of milk. Yellott
contends that the probability the reader chooses a type of beverage (e.g. coffee) in this scenario
should be the same as if they were only shown one cup of each beverage type, regardless of k ≥ 1.
Definition 2 (Uniform Expansion). Consider a choice between n elements in a set S1 =
{i11, . . . , in1}, and another choice from a set Sk containing k copies of each of the n elements:
Sk = {i11, . . . , i1k, i21, . . . , i2k, . . . , in1, . . . , ink}. The axiom of uniform expansion states that for
each m = 1, . . . , n and all k ≥ 1:

pim1S1
=

k∑
j=1

pimjSk
.

We will show that the PCMC model always exhibits a more general property of contractibility, of
which uniform expansion is a special case; it thus always exhibits uniform expansion.

Yellott showed that for any independent RUM with |U | ≥ 3 the double-exponential distribution
family is the only family of independent distributions that exhibit uniform expansion for all k ≥ 1,
and that Thurstone’s model based on the Gaussian distribution family in particular does not exhibit
uniform expansion.

While uniform expansion seems natural in many discrete choice contexts, it should be regarded with
some skepticism in applications that model competitions. Sports matches or races are often modeled
using RUMs, where the winner of a competition can be modeled as the competitor with the best draw
from their random variable. If a competitor has a performance distribution with a heavy upper tail
(so that their wins come from occasional “good days”), uniform expansion would not hold. This
observation relates to recent work on team performance and selection [16], where non-invariance
under uniform expansion plays a key role.

3.2 Contractibility

In a book review of Luce’s early work on the choice axiom, Debreu [10] considers a hypothetical
choice between three musical recordings: one of Beethoven’s eighth symphony conducted by X ,
another of Beethoven’s eighth symphony conducted by Y , and one of Debussy quartet conducted
by Z. We will call these options B1, B2, and D respectively. When compared to D, Debreu argues
that B1 and B2 are indistinguishable in the sense that pDB1

= pDB2
. However, someone may

prefer B1 over B2 in the sense that pB1B2
> 0.5. This is impossible under a BTL model, in which

pDB1
= pDB2

implies that γB1
= γB2

and in turn pB1B2
= 0.5.

To address contexts in which elements compare identically to alternatives but not each other (e.g.B1

and B2), we introduce contractible partitions that group these similar alternatives into sets. We
then show that when a PCMC model contains a contractible partition, the relative probabilities of
selecting from one of these partitions is independent from how comparisons are made between
alternatives in the same set. Our contractible partition definition can be viewed as akin to (but
distinct from) nests in nested MNL models [24].
Definition 3 (Contractible Partition). A partition of U into non-empty sets A1, . . . , Ak is a con-
tractible partition if qaiaj = λij for all ai ∈ Ai, aj ∈ Aj for some Λ = {λij} for i, j ∈ {1, . . . , k}.
Proposition 3. For a given Λ, let A1, . . . , Ak be a contractible partition for two PCMC models on
U represented by Q,Q′ with stationary distributions π, π′. Then for any Ai:∑

j∈Ai

pjU =
∑
j∈Ai

p′jU , (1)

or equivalently, π(Ai) = π′(Ai).

Proof. Suppose Q has contractible partition A1, . . . , Ak with respect to Λ. If we decompose the
balance equations (i.e. each row of πTQ = 0), for x ∈ A1 WLOG we obtain:

π(x)

 ∑
y∈A1\x

qxy +

k∑
i=2

∑
ai∈Ai

qxai

 =
∑

y∈A1\x

π(y)qyx +

k∑
i=2

∑
ai∈Ai

π(ai)qaix. (2)
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Noting that for ai ∈ Ai and aj ∈ Aj , qaiaj = λij , (2) can be rewritten:

π(x)

 ∑
y∈A1\x

qxy

 + π(x)

k∑
i=2

|Ai|λi1 =
∑

y∈A1\x

π(y)qyx +

k∑
i=2

π(Ai)λi1.

Summing over x ∈ A1 then gives

∑
x∈A1

π(x)

 ∑
y∈A1\x

qxy

 + π(A1)

k∑
i=2

|Ai|λi1 =
∑
x∈A1

∑
y∈A1\x

π(y)qyx + |A1|
k∑
i=2

π(Ai)λi1.

The leftmost term of each side is equal, so we have

π(A1) =
|A1|

∑k
i=2 π(Ai)λi1∑

i=2 |Ai|λ1i
, (3)

which makes π(A1) the solution to global balance equations for a different continuous time Markov
chain with the states {A1, . . . , Ak} and transition rate q̃AiAj

= |Aj |λij between state Ai and Aj ,
and q̃AiAi

= −
∑
j 6=i q̃AiAj

. Now qaiaj + qajai ≥ 1 implies λij + λji ≥ 1. Combining this
observation with |Ai| > 0 shows (as with the proof of Proposition 1) that this chain is irreducible
and thus that {π(Ai)}ki=1 are well-defined. Furthermore, because Q̃ is determined entirely by Λ and
|A1|, . . . , |Ak|, we have that Q̃ = Q̃′, and thus that π(Ai) = π′(Ai),∀i regardless of how Q and Q′
may differ, completing the proof.

The intuition is that we can “contract” eachAi to a single “type” because the probability of choosing
an element of Ai is independent of the pairwise probabilities between elements within the sets. The
above proposition and the contractibility of a PCMC model on all uniformly expanded sets implies
that all PCMC models exhibit uniform expansion.

Proposition 4. Any PCMC model exhibits uniform expansion.

Proof. We translate the problem of uniform expansion into the language of contractibility. Let U1

be the universe of unique items i11, i21, . . . , in1, and let Uk be a universe containing k copies of
each item in U1. Let imj denote the jth copy of the mth item in U1. Thus Uk = ∪nm=1 ∪kj=1 imj .

Let Q be the transition rate matrix of the CTMC on U1. We construct a contractible partition of Uk
into the n sets, each containing the k copies of some item in U1. Thus Am = ∪kj=1imj . By the
definition of copies, that {Am}nm=1 is a contractible partition of Uk with Λ = Q. Noting |Am| = k
for all m in Equation (3) above results in {π(Am)}nm=1 being the solution to πTQ = πTΛ =

0. Thus pimU1
= π(Am) =

∑k
j=1 pimjUk

for each m, showing that the model exhibits uniform
expansion.

We end this section by noting that every PCMC model has a trivial contractible partition into single-
tons. Detection and exploitation of Q’s non-trivial contractible partitions (or appropriately defined
“nearly contractible partitions”) are interesting open research directions.

4 Inference and prediction

Our ultimate goal in formulating this model is to make predictions: using past choices from diverse
subsets S ⊆ U to predict future choices. In this section we first give the log-likelihood function
logL(Q; C) of the rate matrixQ given a choice data collection of the form C = {(ik, Sk)}nk=1, where
ik ∈ Sk was the item chosen from Sk. We then investigate the ability of a learned PCMC model to
make choice predictions on empirical data, benchmarked against learned MNL and MMNL models,
and interpret the inferred model parameters Q̂. Let CiS(C) = |{(ik, Sk) ∈ C : ik = i, Sk = S}|
denote the number of times in the data that i was chosen out of set S for each S ⊆ U , and let
CS(C) = |{(ik, Sk) ∈ C : Sk = S}| be the number of times that S was the choice set for each
S ⊆ U .
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4.1 Maximum likelihood

For each S ⊆ U , i ∈ S, recall that piS(Q) is the probability that i is selected from set S as a function
of the rate matrix Q. After dropping all additive constants, the log-likelihood of Q given the data C
(derived from the probability mass function of the multinomial distribution) is:

logL(Q; C) =
∑
S⊆U

∑
i∈S

CiS(C) log(piS(Q)).

Recall that for the PCMC model, piS(Q) = πS(i), where πS is the stationary distribution for a
CTMC with rate matrix QS , i.e. πTSQS = 0 and

∑
i∈S πS(i) = 1. There is no general closed form

expression for piS(Q). The implicit definition also makes it difficult to derive gradients for logL
with respect to the parameters qij . We employ SLSQP [27] to maximize logL(Q; C), which is non-
concave in general. For more information on the optimization techniques used in this section, see
the Supplementary Materials.

4.2 Empirical data results

We evaluate our inference procedure on two empirical choice datasets, SFwork and SFshop, col-
lected from a survey of transportation preferences around the San Francisco Bay Area [18]. The
SFshop dataset contains 3,157 observations each consisting of a choice set of transportation alter-
natives available to individuals traveling to and returning from a shopping center, as well as a choice
from that choice set. The SFwork dataset, meanwhile, contains 5,029 observations consisting of
commuting options and the choice made on a given commute. Basic statistics describing the choice
set sizes and the number of times each pair of alternatives appear in the same choice set appear in
the Supplementary Materials1.

We train our model on observations Ttrain ⊂ C and evaluate on a test set Ttest ⊂ C via

Error(Ttrain;Ttest) =
1

|Ttest|
∑

(i,S)∈Ttest

∑
j∈S
|pjS(Q̂(Ttrain))− p̃iS(Ttest)|, (4)

where Q̂(Ttrain) is the estimate for Q obtained from the observations in Ttrain and p̃iS(Ttest) =
CiS(Ttest)/CS(Ttest) is the empirical probability of i was selected from S among observations in
Ttest. Note that Error(Ttrain;Ttest) is the expected `1-norm of the difference between the empirical
distribution and the inferred distribution on a choice set drawn uniformly at random from the obser-
vations in Ttest. We applied small amounts of additive smoothing to each dataset.

We compare our PCMC model against both an MNL model trained using Iterative Luce Spectral
Ranking (I-LSR) [23] and a more flexible MMNL model. We used a discrete mixture of k MNL
models (withO(kn) parameters), choosing k so that the MMNL model had strictly more parameters
than the PCMC model on each data set. For details on how the MMNL model was trained, see the
Supplementary Materials.

Figure 3 shows Error(Ttrain;Ttest) on the SFwork data as the learning procedure is applied to in-
creasing amounts of data. The results are averaged over 1,000 different permutations of the data
with a 75/25 train/test split employed for each permutation. We show the error on the testing data as
we train with increasing proportions of the training data. A similar figure for SFshop data appears
in the Supplementary Materials.

We see that our model is better equipped to learn from and make predictions in both datasets, and
when using all of the training data, we observe an error reduction of 36.2% and 46.5% compared to
MNL and 24.4% and 31.7% compared to MMNL on SFwork and SFshop respectively.

Figure 3 also gives two different heat maps of Q̂ for the SFwork data, showing the relative rates
q̂ij/q̂ji between pairs of items as well as how the total rate q̂ij + q̂ji between pairs compares to
total rates between other pairs. The index ordering of each matrix follows the estimated selection
probabilities of the PCMC model on the full set of the alternatives for that dataset. The ordered
options for SFwork are: (1) driving alone, (2) sharing a ride with one other person, (3) walking,

1Data and code available here: https://github.com/sragain/pcmc-nips
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Figure 2: Prediction error on a 25% holdout of the SFwork data for the PCMC, MNL, and MMNL
models. PCMC sees improvements of 34.1% and 23.1% in prediction error over MNL and MMNL,
respectively, when training on 75% of the data.

(4) public transit, (5) biking, and (6) carpooling with at least two others. Numerical values for the
entries of Q̂ for both datasets appear in the Supplementary Materials.

The inferred pairwise selection probabilities are p̂ij = q̂ji/(q̂ji + q̂ij). Constructing a tournament
graph on the alternatives where (i, j) ∈ E if p̂ij ≥ 0.5, cyclic triplets are then length-3 cycles in the
tournament. A bound due to Harary and Moser [13] establishes that the maximum number of cyclic
triples on a tournament graph on n nodes is 8 when n = 6 and 20 when n = 8. According to our
learned model, the choices exhibit 2 out of a maximum 8 cyclic triplets in the SFwork data and 6
out of a maximum 20 cyclic triplets for the SFshop data.

Additional evaluations of predictive performance across a range of synthetic datasets appear in the
Supplementary Materials. The majority of datasets in the literature on discrete choice focus on
pairwise comparisons or ranked lists, where lists inherently assume transitivity and the independence
of irrelevant alternatives. The SFwork and SFshop datasets are rare examples of public datasets
that genuinely study choices from sets larger than pairs.

5 Conclusion

We introduce a Pairwise Choice Markov Chain (PCMC) model of discrete choice which defines
selection probabilities according to the stationary distributions of continuous time Markov chains
on alternatives. The model parameters are the transition rates between pairs of alternatives.

In general the PCMC model is not a random utility model (RUM), and maintains broad flexibility
by eschewing the implications of Luce’s choice axiom, stochastic transitivity, and regularity. De-
spite this flexibility, we demonstrate that the PCMC model exhibits desirable structure by fulfilling
uniform expansion, a property previously found only in the Multinomial Logit (MNL) model and
the intractable Elimination by Aspects model.

We also introduce the notion of contractibility, a property motivated by thought experiments instru-
mental in moving choice theory beyond the choice axiom, for which Yellott’s axiom of uniform
expansion is a special case. Our work demonstrates that the PCMC model exhibits contractibility,
which implies uniform expansion. We also showed that the PCMC model offers straightforward in-
ference through maximum likelihood estimation, and that a learned PCMC model predicts empirical
choice data with a significantly higher fidelity than both MNL and MMNL models.

The flexibility and tractability of the PCMC model opens up many compelling research directions.
First, what necessary and sufficient conditions on the matrix Q guarantee that a PCMC model is a
RUM [11]? The efficacy of the PCMC model suggests exploring other effective parameterizations
for Q, including developing inferential methods which exploit contractibility. There are also open
computational questions, such as streamlining the likelihood maximization using gradients of the
implicit function definitions. Very recently, learning results for nested MNL models have shown
favorable query complexity under an oracle model [2], and a comparison of our PCMC model with
these approaches to learning nested MNL models is important future work.

Acknowledgements. This work was supported in part by a David Morgenthaler II Faculty Fellow-
ship and a Dantzig–Lieberman Operations Research Fellowship. We thank Flavio Chierichetti and
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Supplemental Materials

6 Parameterizations of the Q matrix

As observed in the main paper, if we parametrize Q with pairwise probabilities from a BTL model with pa-
rameters γ = {γi}ni=1, i.e. qij = pji =

γj
γi+γj

, the resulting PCMC model is equivalent to an MNL model
with parameters γ. In this section we explore some other ways of parameterizing Q via a pairwise probability
matrix P with entries pij and setting Q = PT .

Blade-Chest models [8] are based on geometric d-dimensional embeddings of alternatives, where each alterna-
tive i is parameterized with a blade vector bi ∈ Rd and a chest vector ci ∈ Rd, in addition to a BTL-like quality
parameter γi > 0. The Blade-Chest model comes in two variations: the Blade-Chest distance model, where

pij(b, c, γ) = S(||bi − cj ||22 − ||bj − ci||22 + γi − γj),
where S(x) = (1 + exp(−x))−1 is the sigmoid/logistic function, and the Blade-Chest inner product model,
where

pij(b, c, γ) = S(bi · cj − bj · ci + γi − γj).
The quality parameters γi serve to connect the models to the BTL model, but do not meaningfully increase
their expressiveness, so we disregard them in our use of the Blade-Chest model here. These two Blade-Chest
models provide useful parameterizations of non-transitive pairwise probability matrices, P (θ), with θ = {b, c}
consisting of the 2dn parameters of the “blade” and “chest” embeddings.

Another technique for parametrizing Q involves representing qij as a function of features of i and j, i.e.
qij = f(Xi, Xj ; θ) where Xi gives the salient features of i, and θ represents parameters that, for instance,
give weights to these features. We can also formulate such analysis as a factoring Q = WTF −D, where W
is a weight matrix,F a feature matrix, and D a diagonal matrix ensuring that the row sums of Q are zero. We
do not explore such parameterizations in this work, but merely highlight the potential to employ latent features
of objects in a straight-forward manner, an approach closely related to conjoint analysis [12]. Such extensions
would be similar to Chen and Joachims’s work exploiting features of pairwise matchups by parametrizing the
blades and chests as functions of those features [9].

7 Inference with synthetic data

We now evaluate our inference procedure’s performance in three synthetic data regimes: (i) choice data gen-
erated from a PCMC model with qij drawn i.i.d. uniformly from [0, 1], (ii) choice data generated for a simple
MNL model with qualities γ drawn uniformly on the simplex, and (iii) choice data generated from a PCMC
model with Q parameterized by a two-dimensional Blade-Chest distance model. In order to create a strongly
non-transitive instance of the Blade-Chest distance model, we draw the blades bi and chests ci uniformly at
i.i.d. points along the two-dimensional unit circle, naturally producing many triadic impasses.

The PCMC model’s Q matrix has n(n − 1) parameters in general. When Q is parameterized according to
BTL we have just n parameters, and when it is parameterized according to a Blade-Chest distance model in d
dimensions, we have 2dn parameters.

We evaluate each parameterization (arbitrary, MNL, Blade-Chest distance) for each synthetic regime. We em-
ploy the Iterative Luce Spectral Ranking (I-LSR) algorithm to learn the model under the BTL parameterization
of Q, where the PCMC model is equivalent to an MNL model. When the data is generated by MNL, we expect
MNL to outperform inference under the general parameterization. When the data is generated by a non-MNL
PCMC model, we expect MNL to exhibit restricted performance compared to a general parameterization, since
the data is not generated by a model that MNL can capture.

7.1 Synthetic data results

We generate training data Ttrain and test data Ttest from each model using 25 randomly chosen triplets as choice
sets. We then follow the inferential procedure in the main paper to evaluare the inferential efficacy of each of
the three models on data generated according to each.

Figure 3 shows our error performance as the data grows, averaged across 10 instances, for each data generating
process and each inference parameterization. We generate 5000 samples, assign 1000 of these to be testing
samples, and incrementally add the other 4000 samples to the training data, tracking error on the testing samples
as we increase the size of the training data set.

The inference is applied to a set U with n = 10 objects, meaning that MNL has 20 parameters, the PCMC
model with arbitraryQ has n(n−1) = 90 parameters, and the PCMC model with the Blade-Chest distance pa-
rameterization in R2 uses 2dn = 40 parameters. Overall we examine 9 data–model pairs, trained sequentially
in 5 episodes, averaged across 10 instances. The figure thus represents 450 trained models.
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Figure 3: Learning error for PCMC, I-LSR, and Blade-Chest PCMC on synthetic data generated
from (i) Arbitrary Q, (ii) MNL, and (iii) Blade-Chest models.

As expected, the inferred PCMC models outperform MNL on data exhibiting IIA violations, while the MNL
model learns the MNL data better, though PCMC is not far behind. More significantly, the Blade-Chest
parametrization of the PCMC model performs very similarly to the general PCMC model in all three sce-
narios, despite having far fewer parameters. This is promising in domains where the O(n2) parameters of a
general PCMC model is infeasible but a O(n) parameterization using a Blade-Chest representation may be
feasible.

8 Additional empirical data results and analysis

8.1 Optimization and smoothing

The MNL models were trained using I-LSR, a specialized algorithm for training Multinomial Logit mod-
els. Meanwhile, the PCMC likelihood was optimized using SQSLP [?] while the Mixed MNL models were
trained using L-BFGS-B [?], which are both general purpose optimization algorithms available as part of the
scipy.optimize.minimize software package. The reason for the different choices is that L-BFGS-B
does not support the linear constraints that are part of the PCMC model likelihood. We choose to use L-BFGS-
B for the MMNL model because it outperformed SQSLP on SFtravel data, and we wanted to ensure that we
were affording it the best possible chance to do well against the new model we contribute in this work.

The additive smoothing applied was α = 0.1 for SFwork and α = 5 for SFshop, where α is added to
each CiS appearing in the likelihood function. The major motivator for the additive smoothing is that SQSLP
occasionally goes awry on some of the permutations of the data, maintaining high error after a bad step. Even
as currently formulated, the mean error improvement is somewhat underestimating the efficacy of the PCMC
model, as a few bad runs out of 1000 will skew the distribution. Bad runs are easy to identify using cross-
validation. Additionally, the implementation of SQSLP would try to compute numerical gradients through
function evaluation at points outside the feasible space, which sometimes involved qij + qji = 0, violating the
irreducibility of the chain. Additive smoothing prevents these issues at the cost of some efficacy of the model.
We find the improvement in error of the PCMC model to be even more significant in light of the optimization
issues involved, and find that it reinforces development of PCMC training algorithms as an interesting research
area. Refining the optimization routines for learning PCMC models should be seen as important future work.

8.2 Empirical results for SFshop data

Figure 4 analyzes the SFshop dataset2, repeating the analysis of SFwork found in the main paper. The
indexing of Q̂ is again according to the estimated selection probabilities on the full set of alternatives, which
were: (1) drive alone both directions, (2) share a ride with one person in both directions, (3) share a ride with
one person in one direction and drive alone in the other direction, (4) walk, (5) share a ride with more than
one person in both directions, (6) share a ride with one person in one direction and more than one in the other
direction, (7) bike, and (8) take public transit. The MMNL model here mixes k = 6 models, giving it 48
parameters while PCMC has 56 and MNL has 8. When using the full training set, PCMC performs 31.3%
better than MNL and 19.2% better than MMNL.

2May 2021: The version of Figure 4 that appeared in the NIPS 2016 conference proceedings incorrectly
incorporated smoothing of the test data. Fixing this bug, the absolute performance of the models changes
somewhat, but the relative performance and conclusions drawn remain unchanged.
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Figure 4: Prediction error on SFshop data for the PCMC, MNL, and MMNL models. There are
improvements of 23.1% and 13.9% in prediction error over MNL and MMNL respectively when
training on 75% of the data.

8.3 Inferred Q̂ matrices

The numerical values of the learned Q̂ matrices, trained 100% of the data, are given below.

Q̂work =


−3.875 2.314 0.557 0. 0. 1.004
18.17 −29.571 0.776 1.836 2.075 6.713
4.84 7.752 −35.994 1.042 14.476 7.884
1. 0.105 0.456 −13.147 3.65 7.937

21.201 9.108 3.323 7.363 −47.7 6.704
11.459 3.014 0.117 5.67 12.334 −32.594



Q̂shop =



−35.264 1. 0. 1. 0. 0. 5.142 28.122
0. −12.959 3.363 0. 0. 2.03 2.433 5.133

1.635 0. −22.945 0.637 0.243 0. 4.877 15.553
0. 12.73 5.95 −24.455 2.174 0. 1. 2.601
1. 3.487 4.458 0.194 −15.366 0. 5.227 1.
1. 1.143 5.788 6.841 6.344 −31.747 6.15 4.482

1.331 1.305 0.136 0. 0.226 0. −30.693 27.695
0. 0. 0.402 10.521 0. 0. 1.602 −12.526


8.4 Count matrices

Here we present data about the frequency with which pairs of alternatives appear in the same choice
set. Matrices Awork and Ashop have as their (i, j) entry the number of choice sets which contained
both i and j in the SFwork and SFshop datasets respectively:

Awork =


− 1323 4755 3729 1658 4755

1323 − 1479 1395 797 1479
4755 1479 − 4003 1738 5029
3729 1395 4003 − 1611 4003
1658 797 1738 1611 − 1738
4755 1479 5029 4003 1738 −



Ashop =



− 3075 3075 3075 1844 3075 2069 2916
3075 − 3157 3157 1908 3157 2136 2997
3075 3157 − 3157 1908 3157 2136 2997
3075 3157 3157 − 1908 3157 2136 2997
1844 1908 1908 1908 − 1908 1908 1876
3075 3157 3157 3157 1908 − 2136 2997
2069 2136 2136 2136 1908 2136 − 2094
2916 2997 2997 2997 1876 2997 2094 −


The relative frequencies of choice sets of different sizes in the two datasets are given in Table 1.

13



Table 1:

|S| = 3 4 5 6 7 8
SFwork 948 1918 1461 702 - -
SFshop 0 1 131 902 311 1812
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