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Predicting discrete choices

• Classic modeling problem with applications to consumer preferences 
(Thurstone ’27), commuting (McFadden ’78), and school choice 
(Kohn-Manski-Mundel ’76) 



Predicting digital discrete choices

How well can we learn/predict “choice set effects”? 
(a.k.a. “violations of the independence of irrelevant alternatives”) 



• Comparative Judgement (Thurstone ’27, Bradley-Terry ’57) 
• Learning: “ranking from pairwise comparisons”
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• Comparative Judgement (Thurstone ’27, Bradley-Terry ’57) 
• Learning: “ranking from pairwise comparisons”

“latent quality”

Maximum 
Likelihood

Q: “Which did users click on?”

Pr(a over b) = Pr(Xa > Xb)

Learning from comparisons



“latent quality”

• Random Utility Models (Luce ’59, McFadden ’68, Manski ’77) 
• Learning linear models: Multinomial Logistic Regression (“MNL”) 
• Regression can also incorporate features of items, users

Pairwise to Setwise

Q: “Which did users click on?”



Learning to Rank
• Explosion of optimization-based approaches to turn click data  

into optimized rankings (Joachims ’02, …) 

• Pair-wise, list-wise, point-wise methods. 
• Lots of experimentation challenges, e.g. position bias hard to control  
• Google since early 2000s: “PageRank is just a feature”

(Bloomberg, 10/2015)



Learning to Choose
• Three assumptions in ranking/RUMs that translate poorly to choices: 

• Stochastic transitivity: 

• Regularity between choice sets S, T: 

• Independence of Irrelevant Alternatives (“IIA”),  
a.k.a. “choice set effects”: 

Pr(a over b) > 0.5

Pr(b over c) > 0.5

)
) Pr(a over c) > 0.5

S ✓ T ) Pr(x from S) � Pr(x from T )

a, b 2 S

a, b 2 T

)
) Pr(a from S)

Pr(b from S)
=

Pr(a from T )

Pr(b from T )



Recent ML work on IIA
• Measurement and models with limited success: 

• Search engine ads (Ieong-Mishra-Sheffet ’12, Yin et al. ‘14) 
• Google web browsing choices (Benson-Kumar-Tomkins ’16) 

• Lots of violations of IIA observed.

“ad group quality”
sequential browsing -> choices



• Learning BTL/PL/MNL recently connected to Markov chains: 
• “RankCentrality” (Negahban-Oh-Shah ’12) 
• “Luce Spectral Ranking” (Maystre-Grossglauser ’15)

Stationary 
distribution of 
a random walk

Maximum 
Likelihood

“latent quality”
Equivalent!  

But 5-50X speed-up 
on large datasets.

New eyes for an old problem



Luce Spectral Ranking
• Maystre & Grossglauser noticed that the stationary conditions of an 

optimization routine for MNL coincide with the stationary conditions of 
a particularly parameterized Continuous-Time Markov Chain. 

qij =
�i

�i + �j
, 8i, j, i 6= j

• Then normalized “quality” is  
the stationary distribution:

• If rates are set to pairwise  
choice probabilities: 
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Luce Spectral Ranking
• Maystre & Grossglauser noticed that the stationary conditions of an 

optimization routine for MNL coincide with the stationary conditions of 
a particularly parameterized Continuous-Time Markov Chain. 

• Implies a much more general choice model:  
why restrict to that parameterization?

qij =
�i

�i + �j
, 8i, j, i 6= j
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• Then normalized “quality” is  
the stationary distribution:

• If rates are set to pairwise  
choice probabilities: 



Pairwise choice Markov chains
• New model that very naturally models choice set effects  
• Model choice probabilities for set S as the stationary distribution of 

pairwise CTMC on S with rates       as parameters.  qij

• Choice from {i,j}: 

• Choice from {i,j,k}:

• Same parameters interleaved across different set sizes.
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Key properties of PCMC model
• No assumptions of transitivity, IIA, or regularity

• No regularity means not even a RUM! 
• Even “Elimination by Aspects” (Tversky ’72) is a RUM. 
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Key properties of PCMC model
• No assumptions of transitivity, IIA, or regularity 

• No regularity means not even a RUM! 
• Even “Elimination by Aspects” (Tversky ’72) is a RUM. 

• PCMC does satisfy axiom of uniform expansion (Yellott ’77) 
• “probabilities are unchanged by making copies of the set” 
• UE in an independent RUM implies Luce’s Axiom (and thus MNL) 
• PCMC satisfies UE without being a RUM 

• We also generalize UE to a stronger property we call contractibility  
               (addresses a thought experiment by Debreu)

vs.



PCMC Predictions
• Dataset: transportation choices around SF for  

commuting and shopping. 
• People had 2-8 options to choose from 
• Many apparent violations of IIA 
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PCMC Predictions
• Dataset: transportation choices around SF for  

commuting and shopping. 
• People had 2-8 options to choose from 
• Many apparent violations of IIA 

• In data with violations of IIA, PCMC does 20-30% better at prediction 
out of sample. Without violations, PCMC falls back to MNL. 
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PCMC Pairwise Probabilities
• Inferred pairwise probabilities are highly non-transitive: 
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PCMC Pairwise Probabilities
• Inferred pairwise probabilities are highly non-transitive: 

• Low-dimensional parameterization of pairwise probabilities: 
• Very recent “Blade-Chest” model (Shen-Joachims ’16a, ‘16b)  

can embed/represent matrix Q with O(n) parameters without  
loss of performance.

work trips

1. Driving alone 
2. Carpool (1) 
3. Walking 
4. Public transit 
5. Biking 
6. Carpool (2+)

Public transit

Carpool

Biking



Machine Learning Choices
• Applications: 

• Testing: When do choice set effects exist, when not? 
• Learning: what S to query to learn model with regret bounds?  
• Design: Given x, what set S maximizes probability of x? 
• UX: do predicted choice set effects persist when explained? 

• Open modelling directions: 
• Incorporate covariates 
• “Choosing to Rank” 

• Big questions: 
• Divergent goals of “Artificial Human Intelligence” vs. AI? 
• Ethics of libertarian paternalism in designed online systems?


