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Motivation

Global maximum without concavity

A common challenge for latent variable mixture models is a desire to impose
sparsity. Since mixture distributions are constrained in their L, norm, L,
regularization becomes toothless, and concave regularization becomes necessary.

Concave regularization tends to involve EM algorithms that must maximize a
non-concave function in their M-step. We introduce a technique for circumventing
this difficulty, using the so-called Mountain Pass Theorem to provide easily
verifiable conditions under which the M-step is well-behaved despite the lacking
concavity.

We also develop a correspondence between logarithmic regularization and what
we term the pseudo-Dirichlet distribution, a generalization of the ordinary Dirichlet
distribution well-suited for inducing sparsity.

A Challenge: Sparse MAP PLSA

Probabilistic Latent Semantic Analysis (PLSA) [1] assumes the following model for
each (word, document, topic) triplet:

P(w,d,z | 0)P(0) = P(w | z)P(z | d)P(d)P(6).
The corresponding regularized log-likelihood is then:

€)= n(w,d)log [Z P(w | 2)P(z | d)} + Y n(d)log P(d) +log P(6)
z d

w,d

£(0)

where ¢ consists of the model parameters P(w | z), P(z | d), P(d), and n(w,d)
counts the occurrences of word w in document d, and n(d) = Y-, n(w, d).

This leads to the following EM algorithm:

E-step: Find P(z | w,d,#’), the posterior distribution of the latent variable z,
given (w,d) and a current parameter estimate 6'.

M-step: Maximize Q(0 | ') = Qo(6 | 6') + log P(6) over 6, where

d w,d,z

The natural sparsity-inducing prior is the Dirichlet distribution (& < 1). In order to
infer a PLSA model with sparse priors, there are then two challenges:

1. M-Step maximization is non-concave for all sparse priors.
2. The log-likelihood function is unbounded for Dirichlet.

To address the non-concavity of the Lagrangian, we provide the following theorem:

Theorem:

Assume that:
(i) every word w is observed in at least one document d,
(i) P(z | w,d,8") > 0 for all (w,d,z), and
(iii) n(d) > (1 — aq)| Z| for each d.
Then each Lagrangian £; has a unique stationary point, which
is the global maximum of the corresponding optimization problem.

Sketch of Proof

For each Lagrangian L;:

* Prove existence of a stationary point.

* Prove that the Hessian is negative definite at every stationary point.

* In particular, every stationary point is a strict local maximum.

* Apply the Mountain Pass Theorem (Courant 1950) [3]:
If ¢: O — Ris C', tends to —oo near dO, and has
two distinct strict local maxima, then it has a third
stationary point that is not a strict local maximum.

* There can only be one stationary point.

Proof by picture of the
Mountain Pass Theorem:

Demonstration

Qu(0]0) =3 n(d)log P(d) + > n(w,d)P(z | w,d,0) log | P(w | 2)P(z | d)]

Pseudo-Dirichlet: A Sparse Prior for Regularization

D

A distribution on the simplex in R? is said to follow a pseudo-Dirichlet distri-
bution with concentration parameter o = (ay,...,a;,) € R? and perturbation
parameter € = (e1,...,¢,) € RY if it has a density on the simplex given by

»

P(zy,...,zp | ay€) H(s, + ;)%

i=
If oy = @ and ¢; = € for all 7, it is called symmetric pseudo-Dirichlet.

Example of varying the parameters when p=2:
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Note that the Pseudo-Dirichlet density is bounded for € > Oanda < 1, while the
Dirichlet density with @ < 1is not [2]. Importantly, note also that « can here be
negative. For e = () and a > 0, it reduces to the ordinary Dirichlet density.

Training a topic model for a corpus of 2,406 blogs, showing ordinary PLSA vs. MAP
PLSA under Pseudo-Dirichlet prior:
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Using the 8 inferred topic vocabularies above, we generated 2,406 sparse topic
distributions, one for each document. We used this to construct a new word-
document distribution Q(w,d), from which we sampled N word-document pairs,
producing a synthetic corpus. From this corpus we inferred a Pseudo-Dirichlet MAP
model P(w,d), and evaluated the model perplexity,

P(P(w,d)) = 2~ Zw.a Qwid) oz Plw.d)
over a range of the prior distribution’s parameters a, ¢:
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The dashed line indicates the perplexity P(Q(w, d)) of the ground-truth
distribution, which is a lower bound.

Future directions

EM under Pseudo-Dirichlet

We wish to utilize the natural assumption that each document contains only a few
topics. We formalize this sparsity assumption by placing Pseudo-Dirichlet priors on
each vector (P(z | d) : z € Z) of topic probabilities. The resulting M-step

maximization of Q(6 | ') is then additively separable with decoupled constraints:

QOO)=D"F.(010)+> Ga(0|0)+H(©| 0.
z d

Here our prior only effects the maximization of G4(6 | 6'). Denoting the
parameters of the dth prior by ag, €4, where oy < 1, the Lagrangian for this
constrained optimization problem is:

Ly(x; N) = Z {(nd —1)log(eq + x.) + c. log :p;} + /\[1 - Z:p;}

where z, = P(z |d)and c. = 3, P(w | w,d,0")n(w, d).

Observe that the Lagrangian is non-concave.

Can our regularization technique be applied successfully to other inference tasks
analyzing mixture distributions with a fixed L, norm? Possible examples include
portfolio optimization in finance and variable reduction in statistics.

Similar sum-log regularization is used for sparse signal recovery (‘compressed
sensing’) in [4]. Is there a unifying framework for these two approaches?

- We observe that PLSA is incapable of achieving true sparsity (in the L, sense). Can
this or other methods be adapted to achieve true sparsity?
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