A Concave Regularization Technique for Sparse Mixture Models

Martin Larsson, Johan Ugander

Motivation

A common challenge for latent variable mixture models is a desire to impose sparsity. Since mixture distributions are constrained in their L₁ norm, L₁ regularization becomes toothless, and concave regularization becomes necessary

Concave regularization tends to involve EM algorithms that must maximize a non-concave function in their M-step. We introduce a technique for circumventing this difficulty, using the so-called Mountain Pass Theorem to provide easily verifiable conditions under which the M-step is well-behaved despite the lacking

We also develop a correspondence between logarithmic regularization and what we term the pseudo-Dirichlet distribution, a generalization of the ordinary Dirichlet distribution well-suited for inducing sparsity.

A Challenge: Sparse MAP PLSA

Probabilistic Latent Semantic Analysis (PLSA) [1] assumes the following model for each (word, document, topic) triplet:

$$P(w,d,z\mid\theta)P(\theta) = P(w\mid z)P(z\mid d)P(d)P(\theta).$$

The corresponding regularized log-likelihood is then:

$$\ell(\theta) = \underbrace{\sum_{w,d} n(w,d) \log \left[\sum_{z} P(w \mid z) P(z \mid d) \right]}_{} + \underbrace{\sum_{d} n(d) \log P(d)}_{} + \log P(\theta)$$

where θ consists of the model parameters $P(w\mid z), P(z\mid d), \underline{P(d)}$, and n(w,d)counts the occurrences of word w in document d, and $n(d) = \sum_{w} n(w, d)$. This leads to the following EM algorithm:

E-step: Find $P(z \mid w, d, \theta')$, the posterior distribution of the latent variable z, given (w, d) and a current parameter estimate θ'

M-step: Maximize $Q(\theta \mid \theta') = Q_0(\theta \mid \theta') + \log P(\theta)$ over θ , where

$$Q_0(\theta \mid \theta') = \sum_{d} n(d) \log P(d) + \sum_{w,d,z} n(w,d) P(z \mid w,d,\theta') \log \Big[P(w \mid z) P(z \mid d) \Big].$$

The natural sparsity-inducing prior is the Dirichlet distribution $(\alpha < 1)$. In order to infer a PLSA model with sparse priors, there are then two challenges:

1. M-Step maximization is non-concave for all sparse priors.

2. The log-likelihood function is unbounded for Dirichlet.

Pseudo-Dirichlet: A Sparse Prior for Regularization

A distribution on the simplex in \mathbb{R}^p is said to follow a pseudo-Dirichlet distribution with concentration parameter $\boldsymbol{\alpha}=(\alpha_1,\ldots,\alpha_p)\in\mathbb{R}^p$ and perturbation parameter $\boldsymbol{\epsilon}=(\epsilon_1,\ldots,\epsilon_p)\in\mathbb{R}^p_+$ if it has a density on the simplex given by

$$P(x_1,\ldots,x_p\mid\boldsymbol{\alpha},\boldsymbol{\epsilon})\propto\prod_{i=1}^p(\epsilon_i+x_i)^{\alpha_i-1}$$

If $\alpha_i = \alpha$ and $\epsilon_i = \epsilon$ for all i, it is called symmetric pseudo-Dirichlet.

Note that the Pseudo-Dirichlet density is bounded for $\epsilon > 0$ and $\alpha < 1$, while the Dirichlet density with $\alpha < 1 \, \mathrm{is}$ not [2]. Importantly, note also that α can here be negative. For $\epsilon = 0$ and $\alpha > 0$, it reduces to the ordinary Dirichlet density.

EM under Pseudo-Dirichlet

We wish to utilize the natural assumption that each document contains only a few topics. We formalize this sparsity assumption by placing Pseudo-Dirichlet priors on each vector $(P(z\mid d):z\in\mathcal{Z})$ of topic probabilities. The resulting M-step maximization of $Q(\theta \mid \theta')$ is then additively separable with decoupled constraints:

$$Q(\theta \mid \theta') = \sum F_z(\theta \mid \theta') + \sum G_d(\theta \mid \theta') + H(\theta \mid \theta').$$

Here our prior only effects the maximization of $\,G_d(\theta\mid heta')$. Denoting the parameters of the ${\rm d^{th}}$ prior by α_d, ϵ_d , where $\alpha_d <$ 1, the Lagrangian for this constrained optimization problem is:

$$\mathcal{L}_d(\boldsymbol{x}; \lambda) = \sum \left[(\alpha_d - 1) \log(\epsilon_d + x_z) + c_z \log x_z \right] + \lambda \Big[1 - \sum x_z \Big]$$

where $x_z = P(z \mid d)$ and $c_z = \sum_w P(w \mid w, d, \theta') n(w, d)$.

Observe that the Lagrangian is non-concave

Global maximum without concavity

To address the non-concavity of the Lagrangian, we provide the following theorem:

Theorem:

Assume that: (i) every word w is observed in at least one document d,

(ii) $P(z \mid w, d, \theta') > 0$ for all (w, d, z), and (iii) $n(d) > (1 - \alpha_d)|\mathcal{Z}|$ for each d.

Then each Lagrangian \mathcal{L}_d has a unique stationary point, which is the global maximum of the corresponding optimization problem.

Sketch of Proof

For each Lagrangian \mathcal{L}_d :

- Prove existence of a stationary point.
 - Prove that the Hessian is negative definite at every stationary point.
- In particular, every stationary point is a strict local maximum. Apply the Mountain Pass Theorem (Courant 1950) [3]:

If $\phi: \mathcal{O} \to \mathbb{R}$ is C^1 , tends to $-\infty$ near $\partial \mathcal{O}$, and has two distinct strict local maxima, then it has a third stationary point that is not a strict local maximum.

There can only be one stationary point.

Demonstration

Training a topic model for a corpus of 2,406 blogs, showing ordinary PLSA vs. MAP

Using the 8 inferred topic vocabularies above, we generated 2,406 sparse topic distributions, one for each document. We used this to construct a new worddocument distribution Q(w,d), from which we sampled N word-document pairs producing a synthetic corpus. From this corpus we inferred a Pseudo-Dirichlet MAP model P(w,d), and evaluated the model perplexity,

$$P(P(w,d)) = 2^{-\sum_{w,d} Q(w,d) \log_2 P(w,d)},$$

over a range of the prior distribution's parameters $\alpha,\epsilon\colon$

The dashed line indicates the perplexity $\mathcal{P}(Q(w,d))$ of the ground-truth distribution, which is a lower bound.

Future directions

- Can our regularization technique be applied successfully to other inference tasks analyzing mixture distributions with a fixed L₁ norm? Possible examples include portfolio optimization in finance and variable reduction in statistics
- Similar sum-log regularization is used for sparse signal recovery ('compressed sensing') in [4]. Is there a unifying framework for these two approaches
- We observe that PLSA is incapable of achieving true sparsity (in the L₀ sense). Can this or other methods be adapted to achieve true sparsity?

References

- [1] T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42:177-196, 2001.
- [2] A. Asuncion, M. Welling, P. Smyth, Y.W. Teh. On smoothing and inference for topic models. In Proc. UAI, 27-34, 2009.
- [3] R. Courant. Dirichlet's principle, conformal mapping, and minimal surfaces. Interscience, New York, 1950.
- [4] E.J. Candès, M.B. Wakin, S.P. Boyd. Enhancing sparsity by reweighted l_1 minimization. J Fourier Analysis and Applications, 14:877-905, 2008.

Paper: http://bit.ly/concavereg Poster: http://bit.ly/concavereg poster