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Events on networks



Observed data



"Choosing to Grow a Graph"

• Model edges as choices

• Conditional on i initiating an edge, which j to pick from choice set C ?

• Conditional Logit model:

[Overgoor, Benson & Ugander, WWW’19]



Conditional Logit choice process



"Choosing to Grow a Graph"

• Generalizes multiple known formation models and dynamics
preferential attachment, local search, fitness, homophily, …

• Efficient maximum likelihood estimation of model parameters, 
existing tools

[Overgoor, Benson & Ugander, WWW’19]



"Choosing to Grow a Graph"

• Generalizes multiple known formation models and dynamics
preferential attachment, local search, fitness, homophily, …

• Efficient maximum likelihood estimation of model parameters, 
existing tools

• Straightforward extension to events

[Overgoor, Benson & Ugander, WWW’19]



Two problems at scale

1. Estimation on large networks infeasible as n options for all m choices
- features change at each event



Two problems at scale
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1. Estimation on large networks infeasible as n options for all m choices
2. Conditional logit model class less realistic

- availability assumption of complete information



Solution to Problem #1 – Negative sampling

• Sample non-chosen alternatives and do estimation on the reduced 
choice set 

also called case-control sampling (see Vu 2015, Lerner 2019)

• Update likelihood with sampling probabilities       of data points:

• Estimates on data with reduced choice sets generated with importance 
sampling are consistent for the estimates using complete choice sets. 
[McFadden 1977]



Negative sampling strategies

Uniform sampling
+ no adjustment necessary, weights cancel out
− inefficient for rare (but important) features

●

●

●

●

●

●●

●

● ●

● ●

●

●

●

●

●

●

●



Negative sampling strategies

Uniform sampling
+ no adjustment necessary, weights cancel out
− inefficient for rare (but important) features

Stratified sampling 
sample according to strata, adjust with 
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Negative sampling strategies

Uniform sampling
+ no adjustment necessary, weights cancel out
− inefficient for rare (but important) features

Stratified sampling 
sample according to strata, adjust with 

Importance sampling
sample according to likelihood of being chosen
− optimal weights are what we’re trying to estimate
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Sampling with synthetic data

• Simulate 160k events with 5k nodes

• Utility function with popularity, 

repetition, reciprocity, and FoFs

• Estimate known parameter values

• Samples n constant at 10k, vary s

• Stratification requires factors less 

negative samples for comparable MSE
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Run time is linear in n and s
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Sampling with synthetic data

• Simulate 160k events with 5k nodes

• Utility function with popularity, 

repetition, reciprocity, and FoFs

• Estimate known parameter values

• Value of n and s at constant n*s budget

• More choice samples (n) is better, but 

diminishing returns below s = 24



Back to problem #2
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2.   Conditional logit model class less realistic



Mixed Logit

• Combines multiple latent logits

• Each ”mode” has it’s own utility function and choice set
for example: social neighborhood

Problems:
• Log-likelihood not convex in general, need much slower EM
• No sampling guarantees



Solution to Problem #2 – De-mixed logit

• Simplify: assume that each mode has a disjoint choice set

• Reduces to m individual conditional logits, simple to estimate

• The chosen item indicates the mode

FoFs
Rest

Friends



De-mixed logit choice process

chooser
neighborhood



De-mixing with synthetic data

• Simulate 80k events with 5k nodes

• ”local” and “rest” mode with different
utility functions             = 0.75
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De-mixing with synthetic data

• Simulate 80k events with 5k nodes

• ”local” and “rest” mode with different
utility functions             = 0.75

• Conditional logit
• Estimates in between the two modes 

(true values are 0.5 and 1.0)

• Importance sampling doesn’t help accuracy



De-mixing with synthetic data

• Simulate 80k events with 5k nodes

• ”local” and “rest” mode with different
utility functions             = 0.75

• Conditional logit
• Estimates not stable for different 

values of s outside the model class
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De-mixing with synthetic data

• Simulate 80k events with 5k nodes

• ”local” and “rest” mode with different
utility functions             = 0.75

• De-mixed logit

• Estimates accurate and stable
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Venmo Data

● Scraped public transactions

● 25M users and 501M transactions

● 80% transactions are “local”

● Analyze stratified CL and de-mixed CL
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● Easy to test hypotheses over 
different modes.

● Degree is number of incoming 
transactions

● Degree is less important 
within social neighborhood, 
super-linear outside.

Venmo Non-parametric estimates
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● Leverage existing results from sampling and econometrics literatures

● Make feasible to estimate complex models on very large graphs

● Think carefully about limitations of model class

Future work

● Theory on “to sample or to negatively sample?”

● Sampling guarantees for mixed logit

● Empirical comparison with similar modeling frameworks (SAOM, REM)

● More applications
THANKS! 

bit.ly/c2g-code
overgoor@stanford.edu
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