# Scaling choice models of relational social data

Jan Overgoor · Stanford University

SIAM-NS

July 09, 2020

Slides: bit.ly/c2g-venmo



Joint work with George Pakapol Supaniratisai (Stanford) & Johan Ugander (Stanford)

## **Events on networks**























## **Observed data**



# "Choosing to Grow a Graph"

[Overgoor, Benson & Ugander, WWW'19]

- Model edges as choices
- Conditional on i initiating an edge, which j to pick from choice set C?
- Conditional Logit model:  $P_i(j,C) = \frac{\exp \theta^T x_j}{\sum_{\ell \in C} \exp \theta^T x_\ell}$

# **Conditional Logit choice process**

t = 0



## "Choosing to Grow a Graph"

[Overgoor, Benson & Ugander, WWW'19]

- Generalizes multiple known formation models and dynamics preferential attachment, local search, fitness, homophily, ...
- Efficient maximum likelihood estimation of model parameters, existing tools

| Process                         | $u_{i,j}$                         | С                  |
|---------------------------------|-----------------------------------|--------------------|
| Uniform attachment [10]         | 1                                 | $\overline{V}$     |
| Preferential attachment [2, 32] | $\alpha \log d_j$                 | V                  |
| Non-parametric PA [50, 54, 58]  | $	heta_{d_i}$                     | V                  |
| Triadic closure [57]            | 1                                 | $\{j: FoF_{i,j}\}$ |
| FoF attachment [28, 61, 73]     | $\alpha \log \eta_{i,j}$          | V                  |
| PA, FoFs only                   | $\alpha \log d_j$                 | $\{j: FoF_{i,j}\}$ |
| Individual node fitness [9]     | $	heta_j$                         | V                  |
| Latent space [20, 38, 51]       | $\beta \cdot d(i,j)$              | V                  |
| Stochastic block model [30]     | $\omega_{g_i,g_j}$                | V                  |
| Homophily [45]                  | $h \cdot \mathbb{1}\{g_i = g_j\}$ | V                  |

## "Choosing to Grow a Graph"

[Overgoor, Benson & Ugander, WWW'19]

- Generalizes multiple known formation models and dynamics preferential attachment, local search, fitness, homophily, ...
- Efficient maximum likelihood estimation of model parameters, existing tools

Straightforward extension to events



## Two problems at scale

1. Estimation on large networks infeasible as *n* options for all *m* choices

- features change at each event



## Two problems at scale

- 1. Estimation on large networks infeasible as *n* options for all *m* choices
- 2. Conditional logit model class less realistic
  - availability assumption of complete information



# Solution to Problem #1 - Negative sampling

- Sample non-chosen alternatives and do estimation on the reduced choice set  $\tilde{C}\subset C, |\tilde{C}|=s$  also called case-control sampling (see Vu 2015, Lerner 2019)
- Update likelihood with sampling probabilities  $q_j$  of data points:

$$P_i(j, \tilde{C}) = \frac{\exp(\theta^T x_j - \log q_j)}{\sum_{\ell \in \tilde{C}} \exp(\theta^T x_\ell - \log q_\ell)}$$

• Estimates on data with reduced choice sets generated with importance sampling are **consistent** for the estimates using complete choice sets. [McFadden 1977]

## Negative sampling strategies

### **Uniform** sampling

- + no adjustment necessary, weights cancel out
- inefficient for rare (but important) features



## **Negative sampling strategies**

#### **Uniform** sampling

- + no adjustment necessary, weights cancel out
- inefficient for rare (but important) features

# **Stratified** sampling sample according to strata, adjust with $q_x = \frac{s}{n_G}$



## **Negative sampling strategies**

### **Uniform** sampling

- + no adjustment necessary, weights cancel out
- inefficient for rare (but important) features

# **Stratified** sampling sample according to strata, adjust with $q_x = \frac{s}{n_G}$

# Importance sampling sample according to likelihood of being chosen

optimal weights are what we're trying to estimate



## Sampling with synthetic data

- Simulate 160k events with 5k nodes
- Utility function with popularity, repetition, reciprocity, and FoFs
- Estimate known parameter values

- Samples n constant at 10k, vary s
- Stratification requires factors less negative samples for comparable MSE



## Run time is linear in n and s



## Sampling with synthetic data

- Simulate 160k events with 5k nodes
- Utility function with popularity, repetition, reciprocity, and FoFs
- Estimate known parameter values

- Value of n and s at constant n\*s budget
- More choice samples (n) is better, but
  diminishing returns below s = 24



# Back to problem #2

2. Conditional logit model class less realistic



## **Mixed Logit**

- Combines multiple latent logits
- Each "mode" has it's own utility function and choice set for example: social neighborhood

$$P_i(j, C) = \sum_{m=1}^{M} \pi_m \frac{\exp \theta_m^T x_j}{\sum_{\ell \in C_m} \exp \theta_m^T x_\ell} \mathbf{1}[j \in C_m]$$

#### Problems:

- Log-likelihood not convex in general, need much slower EM
- No sampling guarantees

## Solution to Problem #2 – De-mixed logit

- Simplify: assume that each mode has a disjoint choice set
- Reduces to m individual conditional logits, simple to estimate
- The chosen item indicates the mode



# De-mixed logit choice process

t = 0

chooser



- Simulate 80k events with 5k nodes
- "local" and "rest" mode with different utility functions  $\pi_{local} = 0.75$

- Simulate 80k events with 5k nodes
- "local" and "rest" mode with different utility functions  $\pi_{local} = 0.75$

### Conditional logit

- Estimates in between the two modes (true values are 0.5 and 1.0)
- Importance sampling doesn't help accuracy



- Simulate 80k events with 5k nodes
- "local" and "rest" mode with different utility functions  $\pi_{local} = 0.75$

#### Conditional logit

 Estimates not stable for different values of s outside the model class



- Simulate 80k events with 5k nodes
- "local" and "rest" mode with different utility functions  $\pi_{local} = 0.75$

- De-mixed logit
- Estimates accurate and stable



## **Venmo Data**



- Scraped public transactions
- 25M users and 501M transactions
- 80% transactions are "local"
- Analyze stratified CL and de-mixed CL



## Venmo Non-parametric estimates

 Easy to test hypotheses over different modes.

 Degree is number of incoming transactions

 Degree is less important within social neighborhood, super-linear outside.



## **Discussion**

- Leverage existing results from sampling and econometrics literatures
- Make feasible to estimate complex models on very large graphs
- Think carefully about limitations of model class

#### **Future work**

- Theory on "to sample or to negatively sample?"
- Sampling guarantees for mixed logit
- Empirical comparison with similar modeling frameworks (SAOM, REM)
- More applications

#### **THANKS!**

