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Events on networks
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Observed data



"ChOOSing to Grow a Graph" [Overgoor, Benson & Ugander, WWW'19]

 Model edges as choices

* Conditional on / initiating an edge, which j to pick from choice set C ?

exp 07 i

» Conditional Logit model: F;(j,C) =



Conditional Logit choice process



"ChOOSing to Grow a Graph" [Overgoor, Benson & Ugander, WWW'19]

* Generalizes multiple known formation models and dynamics
preferential attachment, local search, fitness, homophily, ...

e Efficient maximum likelihood estimation of model parameters,
existing tools

Process Ui, j C
Uniform attachment [10] 1 %4
Preferential attachment [2, 32] alogd; %4
Non-parametric PA [50, 54, 58] de %4
Triadic closure [57] 1 {j : FoF; ;}
FoF attachment [28, 61, 73] alogni,j vV
PA, FoFs only alogd; {j : FoF; j}
Individual node fitness [9] 0; Vv
Latent space [20, 38, 51] B - d(i, ) vV
Stochastic block model [30] Wg;,9; Vv
Homophily [45] h-1{gi = g;} %4




"ChOOSing to Grow a Graph" [Overgoor, Benson & Ugander, WWW'19]

* Generalizes multiple known formation models and dynamics
preferential attachment, local search, fitness, homophily, ...

e Efficient maximum likelihood estimation of model parameters,
existing tools

« Straightforward extension to events




Two problems at scale

infeasible as n options for all m choices

large networks
- features change at each event
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Two problems at scale

1. Estimation on large networks infeasible as n options for all m choices
2. Conditional logit model class less realistic
- availability assumption of complete information
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Solution to Problem #1 - Negative sampling

« Sample non-chosen alternatives and do estimation on the reduced

choice set C' c C,|C| = s
also called case-control sampling (see Vu 2015, Lerner 2019)

 Update likelihood with sampling probabilities 45 of data points:

. exp (07 x; — log q;)
Pi(5.C) =
(4, C) Eéeé exp (HTa:g — log Qg)

« Estimates on data with reduced choice sets generated with importance
sampling are consistent for the estimates using complete choice sets.
[McFadden 1977]



Negative sampling strategies

Uniform sampling
+ no adjustment necessary, weights cancel out

= inefficient for rare (but important) features



Negative sampling strategies

Uniform sampling
+ no adjustment necessary, weights cancel out

= inefficient for rare (but important) features

Stratified sampling .

sample according to strata, adjust with ¢ = —
G



Negative sampling strategies

Uniform sampling
+ no adjustment necessary, weights cancel out

= inefficient for rare (but important) features

Stratified sampling .

sample according to strata, adjust with ¢ = —
G

Importance sampling
sample according to likelihood of being chosen

— optimal weights are what we’re trying to estimate



Sampling with synthetic data

Simulate 160k events with 5k nodes

Utility function with popularity,

repetition, reciprocity, and FoFs o

Estimate known parameter values 010

MSE

0.01 A
Samples n constant at 10k, vary s

n Constant

Uniform
Importance

Stratification requires factors less

negative samples for comparable MSE
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Number of samples (s)
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Sampling with synthetic data

Simulate 160k events with 5k nodes

Utility function with popularity,

repetition, reciprocity, and FoFs

Estimate known parameter values

MSE

Value of n and s at constant n”s budget

More choice samples (n) is better, but

diminishing returns below s = 24

.300 1

.100 1

.030 1

.010 1

.003 1

n*s Constant

Uniform
Importance

12 24 48 96 192 384 768
Number of samples (s)



Back to problem #2

2. Conditional logit model class less realistic
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Mixed Logit

 Combines multiple latent logits

 Each "mode” has it’s own utility function and choice set
for example: social neighborhood
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Problems:
* Log-likelihood not convex in general, need much slower EM
 No sampling guarantees



Solution to Problem #2 - De-mixed logit

« Simplify: assume that each mode has a disjoint choice set
* Reduces to m individual conditional logits, simple to estimate

e The chosen item indicates the mode

., = Friends

bl ‘ FoFs
’ Rest



De-mixed logit choice process

t=0

chooser
neighborhood



De-mixing with synthetic data

 Simulate 80k events with 5k nodes

e "local” and “rest” mode with different
utility functions TMgca] = 0.75



De-mixing with synthetic data

Simulate 80k events with 5k nodes

« . ) . log Deqgree
* "local” and rest” mode with different . 9 Ued
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De-mixing with synthetic data

 Simulate 80k events with 5k nodes

« . ) i Reciprocity (ind
 "local” and rest” mode with different P y (ind)
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De-mixing with synthetic data

Simulate 80k events with 5k nodes
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"local” and rest” mode with different procity (ind)
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Venmo Data

3M -
e Scraped public transactions g
e 25M users and 501M transactions g 2M-
e 80% transactions are “local” é
e Analyze stratified CL and de-mixed CL % o
=
2012 2014 2016 2018

Week



Venmo Non-parametric estimates

e Easy to test hypotheses over
different modes.

e Degree is number of incoming
transactions

e Degree is less important
within social neighborhood,
super-linear outside.
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Discussion

e Leverage existing results from sampling and econometrics literatures
o Make feasible to estimate complex models on very large graphs

e Think carefully about limitations of model class

Future work

e Theory on “to sample or to negatively sample?”

e Sampling guarantees for mixed logit

e Empirical comparison with similar modeling frameworks (SAOM, REM)

o More applications

& bit.ly/c2g-code
K overgoor@stanford.edu



