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Introduction
In this essay, we study the stochastic dynamics of resource management and
lending from a network traffic perspective. We find that as the economic effi-
ciency of lending management strategies is increased, the network agents become
increasingly exposed to systemic risks.

We first review the standard model of independent resource capacity man-
agement due to Erlang, initially developed for telecommunications systems. In
the second section, we motivate the applicability of this resource modeling ap-
proach to liquidity. These first two sections serve as background for the third
section, where we develop a modeling framework for resource lending networks
utilizing the theory of loss networks and alternative routing, presenting results
for symmetric lending networks whereby operational costs are greatly decreased
through resource lending.

In the fourth section, we present our main results, studying the systemic
connectivity brought on by lending and the effect of lending defaults, which
breaks the symmetric benefit of lending participation. As default risk is in-
creased, we observe a rapid transition in optimal lending strategy similar to
phase transitions in physical systems, where the favorability of lending partici-
pation transitions discontinuously from good to bad at a critical probability of
default. Using these results, we propose how a small change in default risk can
lead to a systemic liquidity crisis in the greater process of bank lending.

In a concluding section, we propose directions for future research, primarily
towards the study of heterogenous lending networks. We comment briefly on
the possible applications of game theory to lending participation.

1 Independent resource management
In the classic telecommunications setting [1], resource management refers to
telephone link utilization by customer calls arriving as a Poisson process, ini-
tiated at a constant rate that is uniform in time, and utilizing links for an
exponentially distributed period of time.

1.1 The birth and death process
The utilization of C resource units can then be modeled by a finite birth and
death process, which is truncated from above by the capacity C. The transition
rates become

q(j, j + 1) = λ, j = 0, 1, . . . , C − 1
q(j, j − 1) = jµ, j = 1, 2, . . . , C

, (1)

where λ is the rate of the arrival process and µ is the rate of the departure
process. Through detailed balance and normalization, it can be shown that the
probability distribution πC(j) (subscript C to emphasize that different capaci-
ties lead to different equilibrium distributions) becomes

πC(j) =
νj

j!

(
C∑
i=0

νi

i!

)−1
, j = 0, 1, . . . , C, (2)
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where ν = λ/µ. The probability of a call being blocked (the blocking probability)
then takes the form of the classic Erlang-B formula,

E(ν, C) = πC(C) =
νC

C!

(
C∑
i=0

νi

i!

)−1
. (3)

1.2 Cost minimization
The operational challenge for the resource manager is to determine the optimal
capacity C where profits are maximized. We assume that there exists a contrac-
tual obligation to meet all withdrawal requests, and that unsatisfied requests
must be satisfied through more expensive external means.

When managing a pool of equipment, this may mean temporarily leasing
equipment directly from the manufacturer. To provide an example, many ser-
vices models for ‘utility computing’, where mainframe servers are sold and leased
to computing customers, offer to sell computing systems with extra idle proces-
sors at no significantly elevated purchasing price. These extra processors are
leased temporarily ‘on-demand’ at a later date, to manage peak loads, albeit for
a substantial fee. The question for the computing customer is then to decide
how many processors to purchase directly and how many to leave for emergency
leasing.

Without resource lending, this operational challenge is then a matter of
balancing the opportunity cost of owning C resource units with the costs of
emergency leasing (which occurs for the fraction of requests that are blocked,
E(ν, C)). The optimization problem becomes

Copt(ν) = argmin
C∈Z+

ωINV C + ωEXT νE(ν, C), (4)

= argmin
C∈Z+

C +
ωEXT
ωINV

νE(ν, C)︸ ︷︷ ︸
C1(C)

, (5)

where ωINV is the opportunity cost interest rate, the alternative return on
investment for the value of a resource unit elsewhere, and ωEXT is the interest
rate for emergency leasing.

An example of the cost function C1(C) for a fixed traffic rate (ν = 100)
under three diffferent interest rate scenarios is shown in Figure 1(a), while the
optimal capacity Copt as a function of ν is shown in Figure 1(b), for the same
three scenarios.
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Figure 1: (a) The cost function C1(C) from (5), calculated for three different
interest rate scenarios, with the differnet optima (Copt) indicated. The scenario
ωEXT /ωINV ≤ 1 would result in Copt = 0, since requests might as well be shifted
to the external mechanism. Notice that under certain interest rate conditions, it
may be optimal to hold fewer resource units than are being utilized on average,
owing to the cheap availability of external resources. (b) The optimal capacities
Copt(ν), for the same three interest rate scenarios. Capacities are restricted to
whole units.

4



2 Liquidity as a resource
The purpose of this section is to accommodate the specific details of liquidity
management within the context of the vanilla resource management problem
as presented in the previous section. By considering a more technically correct
model and offering a comparison, we demonstrate that optimal liquidity man-
agement can be well approximated by optimal vanilla resource management.

As a vanilla resource management problem, we may view bank lending as a
process whereby banks hold C units of currency reserved for liquidity manage-
ment, and these units are withdrawn through a withdrawal process with events
uniformly distributed in time, and returned after an exponentially distributed
period of time. In this case we have precisely the process described in (1), where
state j refers to having j of the C units currently withdrawn. This is, however,
a mildly inaccurate view of process.

More accurately, the process is the ‘reverse’ of (1), where it is the deposit
arrivals that are uniformly distributed in time, and the withdrawal process in-
tensity is linear in the amount of liabilities held with the bank. We now aim to
show that the two models are truncations of opposite tails of the same nearly
symmetric distribution, and therefore exhibit identical dynamics to a very close
approximation.

2.1 Lower truncated liquidity process
Let us assume that a bank receives stationary streams of deposit and withdrawal
traffic. Such a bank will then aim to invest its liabilities for a higher return than
promised to the depositor, through loans or other asset purchases. Banks can
not invest all of their funds, because they must maintain a certain level of liquid
assets in order to meet withdrawal traffic. This avoids being forced to sell assets,
a central hazard in banking because often times such assets are invested with
contractual obligations, and can not be made available to customers without a
financial penalty to the bank for premature termination. Furthermore, poten-
tially illiquid assets may be difficult to sell quickly for a fair price, since they
may not be so regularly traded.

And so, banks maintain a certain amount of liquidity to meet day to day
liquid needs. Of course, banks are interested in maintaining as small a liquidity
reserve as possible, because each unit of currency reserved for liquidity carries
with it an opportunity cost owing to its uninvested nature, just as with a vanilla
resource.

The total liabilities of a bank can again be described as a birth and death
process on the set of non-negative integers, with the transition rates

q(j, j + 1) = λ, j = 0, 1, 2, . . .
q(j, j − 1) = jµ, j = 1, 2, 3, . . .

, (6)

where λ is the rate of the deposit arrival process and µ is the rate of the with-
drawal arrival process. Here state j refers to the bank holding j units of liability.
Across the unbounded set of non-negative integers, the equilibrium distribution
is (classically) given by the Poisson distribution (again, ν = λ/µ),

πPo(j) =
νj

j!

( ∞∑
i=0

νi

i!

)−1
=
νj

j!
e−ν , j = 0, 1, 2, . . . . (7)
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This process becomes modified somewhat when R−1 resources are invested,
and thereby removed from the system. In this case, the state space of the birth
and death process is truncated from below and the transition rates become

q(j, j + 1) = λ, j = R,R+ 1, . . .
q(j, j − 1) = jµ, j = R+ 1, R+ 2, . . .

. (8)

For this process, the equilibrium probability πlR(R) (superscript l for lower trun-
cated, and subscript R to again emphasize that different resource reservations
lead to different equilibrium distributions) of occupying state R is then the
boundary condition for normalization.

Through detailed balance, we derive the equilibrium distribution as

πlR(j) =
νj

j!

R!

νR
πlR(R) j = R+ 1, R+ 2, . . . , (9)

and normalization provides πlR(R),

πlR(R) =
νR

R!

(
eν −

R−1∑
i=0

νi

i!

)−1
. (10)

The final form of the equilibrium distribution then becomes

πlR(j) =
νj

j!

(
eν −

R−1∑
i=0

νi

i!

)−1
j = R,R+ 1, . . . . (11)

If we compare this result to the equilibrium distribution of the birth and death
process truncated from above in (2), we notice a disagreement. As an aside,
however, notice that πl0 = π∞ = πPo.

The blocking probability of this system (arbitrarily denoted F (ν,R)) is the
fraction of withdrawals that must be handled via external means. By the re-
versibility of the underlying stationary linear open migration process, the with-
drawal process at equilibrium is a Poisson process, and so the proportion of
withdrawals being blocked is equal to the probability of being in the boundary
state (πlR(R)),

F (ν,R) = πlR(R) =
νR

R!

(
eν −

R−1∑
i=0

νi

i!

)−1
. (12)

This is then the fraction of withdrawals that the bank is not able to honour
directly should they have R−1 units of currency occupied in investments, which
is to be compared to E(ν, C) in (3), the fraction of resource subscription requests
that a resource manager is forced to satisfy externally when only holding C units
of the resource.

The differences between F (ν,R) and E(ν, C) will now be discussed. The two
blocking probabilities pertain to opposing tail probabilities of a distribution that
is very closely symmetric about its mean, provided that the traffic rate ν is large.
And so, when we are interested in studying the ‘lower blocking probability’
F (ν,R), in practice it is much easier to study the ‘upper blocking probability’
E(ν, C). While we do not derive any limit theorems comparing the processes,

6



we propose the following approximation based on symmetry (where [ · ] is the
nearest integer function),

F (ν,R) ≈ E(ν, 2[ν]−R), (13)

where the probability of a bank withdrawal denial is approximated by the block-
ing probability of a vanilla resource management problem with an appropriate
capacity (C = 2[ν]−R). Likewise, a vanilla resource management problem with
capacity C approximately corresponds to a bank liquidity management problem
with investment R = 2[ν]− C.

By making this approximation, we are able to bring the problem of liquidity
management into the standard language of resource management. The validity
of the approximation will be motivated in Section 2.4.

2.2 On reserve requirements
Several national governments require banks to maintain a reserve requirement
precisely for the liquidity management needs outlined above. From a historical
perspective, reserve requirements were implemented to avoid bank runs, where
banking customers questioning the solvency of a bank would rapidly withdraw
funds. Reserve requirement make it possible for banks to manage irrational bank
runs without being forced to liquidate long assets, a feedback amplification that
could otherwise cause a major crisis for a bank.

In the United States the reserve requirement for banks holding more than
$43.9 million is 10% of deposits [2]. For banks in the United Kingdom there
is no reserve requirement. In this essay, we will not be considering bank runs
because they are principally a historical problem largely eliminated by deposit
insurance schemes such as the Federal Deposit Insurance Corporation (FDIC)
in the United States and Financial Services Compensation Scheme (FSCS) in
the United Kingdom.

Our modeling framework is fully applicable when considering the manage-
ment of liabilities under thinned deposit and withdrawal processes, where a cer-
tain percentage of incoming deposits is thinned off upon deposit and returned
upon withdrawal. Therefore, while we have not explicitly considered reserve
requirements, they are not in conflict with our approach.

2.3 Liquidity cost minimization
The operational challenge for banks is to determine the optimal amount of
resources (R − 1) that should be invested for returns without the bank being
forced to raise emergency capital through asset sales (a costly predicament, as
mentioned previously). Such a ‘fire sale’ of assets is indeed problematic, and we
will suppose the existence of an open money market, which is notably different
from the interbank lending markets studied later in the essay.

On the open money market, banks can borrow money from money brokers
outside the central banking system, and thereby avoid hazardous asset sales.
While the interbank lending market closely tracks a target interest rate set by
the central bank, open money market lending is much more obfuscated. The
interest rates offered on the open money market fluctuate considerably. The
British Bankers’ Association conducts and releases daily industry polls tracking
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interest rates for loans in ten currencies at 15 loan durations (from overnight to
12 months). The interquantile means of these polls make up what are commonly
called the LIBOR (London InterBank Offered Rate) rates [3].

Because the LIBOR lending market can at times be illiquid, it is important
to consider ωEXT as the general cost of acquiring liquidity ‘externally’, where
a dried up LIBOR market may very well result in the fire sale of illiquid assets
being the only accessible option.

Liquidity cost minimization is now a matter of balancing the profit from
investing liabilities with the cost brought by being forced to perform external
lending for unsatisfied withdrawals. For each unit of liquidity invested and re-
moved from the bank, there is an investment profit (ωINV ), aloing with a prob-
ability F (ν,R) of incurring emergency external costs (ωEXT ). The optimization
problem becomes

Ropt(ν) = argmax
R∈Z+

(R− 1)(ωINV − ωEXTF (ν,R)), (14)

= argmax
R∈Z+

(R− 1)(1− ωEXT
ωINV

F (ν,R)︸ ︷︷ ︸
C2(R)

). (15)

2.4 Approximation
To motivate the approximation in (13), we now compare the optima of the
two cost functions C1(C) and C2(R) from (5) and (15). In Figure 2, Ropt(ν) is
plotted alongside the approximation 2[ν]− Copt(ν), with very good agreement.
The interest rate scenario used is the last of the three presented in Figures 1
and 2. Furthermore, to show that this agreement is not specific to the chosen
interest rate scenario, in Figure 3 we plot Ropt and 2[ν]−Copt for varying ωEXT
at a fixed traffic intensity ν = 100, where we again find very good agreement.

In conclusion, we can approximate the lower blocking probability of the
liquidity management problem by the upper blocking probability of the vanilla
resource management problem. From this point in the essay and on, we will
leave the details of liquidity management behind us and treat units of currency
as any other vanilla resource, advancing to our main analysis of the effects of
different network resource management strategies upon systemic risks.

2.5 Traffic burstiness
Throughout the essay, there is assumed to be a ‘unit’ of resource lending, which
is an admittedly inaccurate assumption for liquidity management, where loans
are certainly issued across a wide range of magnitudes, exhibiting notable bursti-
ness. For this essay, it was thought best to confine the results to the Poissionian
regime of traffic with uniform ‘unit’ sizes, and relegate possible generalizations
for bursty traffic to future work.
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problem (Ropt) with the approximation via the vanilla resource management
problem (2[ν] − Copt), as a function of traffic intensity ν. The interest rate
scenario is (ωEXT = 0.09, ωINV = 0.03).
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Figure 3: A comparison of the true optimal investment level of the liquidity
problem (Ropt) with the approximation via the vanilla resource management
problem (2[ν] − Copt), as a function of external investment cost ωEXT , with
fixed ν = 100. Notice the saturation of the approximation at ωEXT /ωINV = 1,
where Copt = 0 implies that 2[ν] − Copt = 2[ν] = 200, while Ropt → ∞. This
inaccuracy is however well confined to the region very near ωEXT /ωINV = 1,
and will not effect our modelling.
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3 Lending networks
We are now prepared to study the consequences of interbank lending upon
liquidity management. In practice, banks often borrow from each other to meet
their liquidity needs (or rather, their reserve requirement needs, see Section 2.2).
This occurs through the lending of federal funds, reserves kept with central banks
specifically for this purpose, which is conducted at or near the target federal
funds rate, a control parameter which has become the cornerstone of modern
monetary policy.

There are many technical details regarding the terms of participation in the
central bank lending network that we will not be elaborating in any detail.
Notably, the existence of discount window lending plays an important role by
offering overnight credit to participants, though excessive participation in the
discount window lending process is discouraged through various mechanisms. In
this essay, we assume that banks must turn the open money market (LIBOR) for
needs not satisfied by the federal funds interbank market, rather than accessing
the discount window. As a motivation for this decision, at the time of writing
this essay the LIBOR rate is far above the discount window rate, indicating
that banks are currently restricted from passing on discount window funds to
the open money market, and the availability of discount window funds to cover
liquidity needs is far from complete.

At this point it is important to emphasize that it is not the goal of this model
to achieve completely detailed accuracy, but rather to investigate and illustrate
the general structure of lending networks.

3.1 Network topology and symmetry
Throughout this essay, we assume a homogeneous banking network, where each
bank is managing the same traffic rate ν. Further, to sidestep game-theoretic
considerations of non-cooperation, we will assume each bank operates under the
same management strategy, choosing the same liquidity capacity. We comment
briefly on network heterogeneity and applications of game theory in Section 5.

Without interbank lending, each bank manages its liquidity independently,
and as such, the trivial interbank network can be viewed as a directed star
graph that we will call a Trivial Lending Network (TLN). In a TLN, each bank
is connected to a central resource node (RN) by a resource link, with capacity
C1, and banks independently manage withdrawal and deposit traffic arriving
upon the directed edge from their bank to the RN, as in Figure 4(a). This is
the ‘network’ studied in Section 1.

Building upon the Trivial Lending Network model, we now introduce two
opposing directed edges between each pair of banks, which we call interbank
links, enabling the possibility of routing withdrawal requests via other banks.
We assign a homogenous capacity constraint (C2) to these interbank links. We
will call this extended graph of N bank nodes and one central resource node a
Interbank Lending Network (ILN), see Figure 4(b). Momentarily disregarding
the resource node, we see that the the bank nodes now form a complete directed
graph.

The Interbank Lending Network model is rather different from the standard
Loss Network model for telecommunications, as presented in [4]. That said,
while the Interbank Lending Network model is not a complete graph, owing to
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Figure 4: (a) The directed star graph representing a Trivial Lending Network
with five independent banks and the resource node (RN) at the center. Traffic
arrives independently at rate ν to each resource link connecting a bank to the
RN. (b) The directed graph representing an Interbank Lending Network, with
five banks and the RN at the center. It is important to note that no traffic
arrives directly to the interbank links.

the resource node, it still exhibits notable symmetries, making the Erlang Fixed
Point analysis commonly utilized in the study of Loss Networks fully applicable,
as we will now show.

3.2 Withdrawal rerouting
When a withdrawal request arrives to a resource link between a bank and the
resource node, the bank accepts the request if there is capacity. If there is no
capacity available, the bank attempts to reroute the request via another bank,
chosen at random (uniformly). The bank handling the rerouting request accepts
the request if it has capacity.

Under this scheme, the traffic offered to each resource link is the regular
arrival traffic for that bank (ν), as well as being offered a uniformly divided
share (1/(N − 1)) of the blocked traffic from (N − 1) other banks attempting to
reroute. This traffic has been blocked once at the other bank’s resource link with
probability B1 and then accepted on both the interbank link and the receiving
resource link with probability (1−B1)(1−B2).

Formalizing this rerouting mechanism, the probability that a withdrawal is
blocked can be derived from the following Erlang Fixed Point calculation, B1 = E

(
ν + νB1(1−B1)(1−B2)

(1−B1)
, C1

)
B2 = E

(
νB1(1−B1)(1−B2)

(1−B2)
, C2

) , (16)

which reduces to {
B1 = E (ν + νB1(1−B2), C1)
B2 = E (νB1(1−B1), C2)

. (17)

We advance immediately to the generalized scenario whereby M rerouting
attempts are permitted. In this case matters do not simply so easily, and (16)
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becomes 
B1 = E

(
ν +

νB1[1−[1−(1−B1)(1−B2)]
M ]

(1−B1)
, C1

)
B2 = E

(
νB1[1−[1−(1−B1)(1−B2)]

M ]
(1−B2)

, C2

) . (18)

Given a traffic rate ν, a set number of rerouting attempts M , and a set of
capacities (C1, C2) to define our ILN, we can then calculate the fixed point
(B∗1 , B

∗
2) of the above equations. From this, we can calculate the probability

that a withdrawal will be accepted for the ILN all-together as the sum of the
probability of not being blocked on our first attempt (1−B∗1) and the product
of the probability of being blocked on the resource link on our first attempt and
not being blocked for M rerouting attempts. This allows us to derive the loss
probability L as

1− L = (1−B∗1) +B∗1

(
1− [1− (1−B∗1)(1−B∗2)]

M
)
, (19)

L = B∗1 [1− (1−B∗1)(1−B∗2)]
M
. (20)

Note that this loss probability even applies when M = 0.
Here we briefly comment of the fact that the case M = 0 (the absence

of routing) is equivalent to C2 = 0. In later sections, we will primarily be
considering only the case of aggressive loan rerouting, M = 10, and characterize
the lending market (or lack there of) solely through the interbank capacity C2.
The effect of varying M is returned to in Section 4.1.

3.3 Interbank link capacity (C2), extreme cases
Let us consider the extreme cases of interbank lending, which take on notable
reduced forms that will return later in the essay. If the interbank capacity is
infinite, C2 =∞, this leads to B2 = 1, and (18) and (20) reduce to

B1 = E

(
ν +

νB1

[
1−BM1

]
(1−B1)

, C1

)
, (21)

L′ = [B∗1 ]
M+1. (22)

At the other extreme, let us consider what happens when the interbank capacity
is to C2 = 0. In this case B2 = 1, and (18) reduces to the Trivial Lending
Network scenario studied in Section 1, where we obtain the explicit Erlang
formulas

B∗1 = E(ν, C1), (23)
L′′ = B∗1 . (24)

3.4 The limit ν →∞, C1 →∞
In this subsection, we derive limit results for the blocking probability and loss
probability under the limiting regime ν →∞, C1 →∞, where ν/C1 is constant,
analogous to the standard result presented for independent links and applied to
Loss Networks in [4]. We conjecture that the limit form of the loss probability
L is independent of the interbank capacity C2 and the number of rerouting
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attemptsM . Furthermore, we propose that this implies that Interbank Lending
Networks are never hysteretic, in contrast to the occasional bistability of Loss
Networks under certain high traffic conditions.

We first review the standard limit result for independent lending networks
(C2 = 0, M = 0), which is the same as for an independent link in a Loss
Network.

Lemma 3.1. For an independent link with traffic rate λ and capacity C, the
high-traffic-high-capacity limit of the loss probability is L = (1− C

λ )
+.

Proof. We are interested in studying what happens to E(Nλ,NC) as N →∞.
We find the limiting blocking probability B to be

B = lim
N→∞

E(Nλ,NC) (25)

= lim
N→∞

(Nλ)NC

(NC)!∑NC
i=0

(Nλ)j

j!

(26)

= lim
N→∞

1

1 + C
λ + · · ·+

(
C
λ

)NC (27)

=

(
1− C

λ

)
lim
N→∞

1

1−
(
C
λ

)NC+1
(28)

=

{
1− C

λ if C < λ
0 if C > λ

(29)

=

(
1− C

λ

)+

(30)

For independent links, the loss probability L = B, which finishes the result.

Next, we show that the same loss probability limit is achieved for M = 1,
which is importantly independent of C2.

Lemma 3.2. For an Interbank Lending Network with rerouting count M = 1,
traffic rate ν, resource link capacity C1 ≥ 0 and interbank link capacity C2 ≥ 0,
the high-traffic-high-capacity limit of the loss probability of the network is L =
(1− C1

ν )+.

Proof. Applying the limit from Lemma 3.1 to (17), we obtain B1 =
(
1− C1

ν+νB1(1−B2)

)+
B2 =

(
1− C2

νB1(1−B1)

)+ . (31)

We proceed with two cases. In the first case, C2/ν > B1(1−B1), which implies
that B2 = 0, and the blocking and loss probabilities become

B2
1 =

{
1− C1

ν if C1 < ν
0 if C1 > ν

, (32)

L = B1(1− (1−B1)) = B2
1 (33)

=

(
1− C1

ν

)+

. (34)
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In the second case, C2/ν < B1(1−B1), we find a different blocking probability,
but the same loss probability,

B1 =

{
1− C1

ν + C2

ν if C1 < ν
0 if C1 > ν

, (35)

L = B1(1− (1−B1)(1−B2)) (36)

=

{
(1− C1

ν + C2

ν )− C2

ν if C1 < ν
0 if C1 > ν

(37)

=

(
1− C1

ν

)+

. (38)

Now, we conjecture that the same holds for any general M .

Conjecture 3.3. For an Interbank Lending Network with traffic rate ν and
resource link capacity C1 ≥ 0, the high-traffic-high-capacity limit of the loss
probability of the network is L = (1− C1

ν )+, for all M ≥ 0, C2 ≥ 0.

In addition to the lemma proven above, the conjecture is further made plau-
sible by another lemma, showing that the conjecture is provably true for all
choices of M in the special case when C2 =∞.

Lemma 3.4. For an Interbank Lending Network with traffic rate ν, resource
link capacity C1 ≥ 0 and infinite interbank link capacity C2 = ∞, the high-
traffic-high-capacity limit of the loss probability of the network is L = (1− C1

ν )+,
for all M ≥ 0.

Proof. If we apply Lemma 3.1 to the M -try rerouting strategy with infinite C2

presented in (21), we obtain

B1 =

(
1− C1(1−B1)

ν(1−B1) + νB1(1−BM1 )

)+

(39)

=

(
1− C1(1−B1)

ν(1−BM+1
1 )

)+

. (40)

After some algebra, we can derive

BM+1
1 =

(
1− C1

ν

)+

, (41)

and since the loss probability L = BM+1
1 , we again obtain the same familiar

result as before, L = (1− C1

ν )+.

This makes us fairly confident that our conjecture is true. What is the
significance of this conjecture, if true? In the case of Loss Networks, traffic
rerouting is known to causes hysteresis effects for high traffic systems (with
accordingly high capacity) [5]. In Lemma 3.4, we have effectively shown that
the high-traffic-high-capacity limit of the loss probability for a lending network
with infinite interbank lending capacity C2 is not hysteretic, no matter how
aggressively traffic is rerouted.
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This is an important difference between Loss Networks and ILNs. Since
ILNs do not exhibit hysteresis, technical strategies such as trunk reservation
[4], which can be shown to resolve hystereses for Loss Networks, are not nec-
essary. Intuitively this is sensible, since for ILNs, the interbank links utilized
for rerouting are not in competition for direct routing. Having motivated this
non-existance of hysteresis through the above limit results, we now return to
the more concrete operational task of cost minimization.

3.5 Cost minimization and rerouting efficiency
We now investigate what happens when the capacity constraints C1 and C2

are chosen optimally, though a cost-minimization procedure analogous to the
approaches used in Section 1 and 2. Will once again limit ourselves to the case
where all banks receive the same traffic rate ν and all banks choose the same
operating capacities.

This symmetry leads to a very important degeneracy in our model. Because
all banks have the same capacity strategy, traffic, and interest rates, the ex-
pected frequency of lending is equal to the expected frequency of borrowing.
Because of this, there is no cost of lending. As such, the lending network will
exhibit high systemic connectivity, a property we will explore further in the next
section, where this symmetry will be broken by a probability of loan default.

Without a cost of lending or borrowing, the operational cost function then
consists of the sum of the cost of capital (ωINV C) and the cost of external
resource acquisition for lost withdrawal requests (ωEXT νL), though the loss
probability L for the network problem, as derived in (20), is notably different
from the earlier independent problems, where the loss probability was simply
the blocking probability. The optimization problem becomes

Copt = argmin
C1,C2∈Z+

ωINV C2 + ωEXT νL (42)

= argmin
C1,C2∈Z+

C1 +
ωEXT
ωINV

ν
[
B∗1 (1− (1−B∗1)(1−B∗2))

M
]
, (43)

where (B∗1 , B
∗
2) are the fixed point to the multirouting Erlang equations,

B1 = E

(
ν +

νB1[1−[1−(1−B1)(1−B2)]
M ]

(1−B1)
, C1

)
B2 = E

(
νB1[1−[1−(1−B1)(1−B2)]

M ]
(1−B2)

, C2

) , (44)

and the optimum Copt is now vector valued. There is no direct cost associated
with the interbank link capacity C2, since these links do not correspond to actual
resources, which differs from the resource link capacity C1.

In Figure 5(a), we compare this cost function to the cost function for the
independent management problem described in Section 1. In Figure 5(b), the
optimal resource link capacities C1,opt is compared to that of the independent
banking problem, as a function of the traffic intensity ν, with M = 10 fixed.
Not shown is the fact that in all these studies, C2,opt = ∞, since there are no
negative consequences of lending or borrowing.

Interbank lending clearly decreases the operational cost of liquidity man-
agement, as the considerable difference between the minimal operational costs
shown in Figure 5(a) confirm.
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Figure 5: (a) The cost function for the independent resource management prob-
lem from (5), compared to the cost function for the interbank lending problem
(M = 10) from (43), at traffic rate ν = 100. (b) The optimal resource link
capacity for the independent management problem Copt, compared to the opti-
mal resource link capacity C1,opt for the network problem (M = 10), where the
optimal interbank link capacity C2,opt =∞, for all ν. The interest rate scenario
here is (ωINV = 0.03, ωEXT = 0.09).
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4 Systemic connectivity and default risks
In the previous section we claimed that since the expected profit of lending and
the expected cost of borrowing are equal and opposite in sign for participants in
an Interbank Lending Network with symmetric traffic, there is no cost associated
with lending participation. We will now show what lending does to the systemic
connectivity of the network, and then introduce an asymmetric cost of loan
defaults, with curious results.

4.1 Systemic connectivity
Here we study the fraction of withdrawal requests that are rerouted when inter-
bank capacity is enabled (C2 = ∞), as a function of the resource capacity C1,
paying particular attention to this rerouting fraction for the optimal capacity
C1,opt from the optimization problem in the previous section.

The probability that a withdrawal is rerouted is the probability that it is
blocked times the probability that it is not blocked in one of M rerouting at-
tempts. This probability, divided by the probability that a request is not lost,
gives us the fraction of carried requests that are rerouted, which we will utilize
as a measure of systemic connectivity. This fraction R is given by

R =
B∗1

(
1− [1− (1−B∗1)(1−B∗2)]

M
)

1− L
(45)

=
B∗1

(
1− [1− (1−B∗1)(1−B∗2)]

M
)

(1−B∗1) +B∗1

(
1− [1− (1−B∗1)(1−B∗2)]

M
) (46)

=
B∗1 −B∗1 [1− (1−B∗1)(1−B∗2)]

M

1−B∗1 [1− (1−B∗1)(1−B∗2)]
M

. (47)

When C2 = ∞, as is the case for the optimal management strategy in the
previous section, then B∗2 = 0 and this reduces to

R′ =
B∗1 −B∗M+1

1

1−B∗M+1
1

. (48)

In Figure 6 we plot the rerouting fraction R as a function of resource capacity
C1, for traffic intensity ν = 100, at several different rerouting attempt levels
M . We highlight the location of the optimal capacity C1,opt in each case, and
alongside R we also plot the loss probabilities L and blocking probabilities B∗1 .
All plots utilize the interest rate scenario (ωINV = 0.03, ωEXT = 0.09).

In Figure 7, we offer a more pointed view of the effect of varying the number
of rerouting attempts M . We plot the same three quantities (B∗1 , L and R) at
the optimal resource link capacity C1,opt, as a function of rerouting attempts
M . We also plot the optimum C1,opt itself, along with the cost at the opti-
mum. Here we can see that beyond M = 10, the cost benefit of rerouting is no
longer measurable, while the rerouting fraction R, our measure of connectivity,
continues to rise.

AsM →∞, we see the rerouting fraction R approach 1. This is the systemic
connectivity which we are referencing. While aggressive rerouting does increase
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the economic efficiency of the network, the fraction of withdrawals that are
being handled in a rerouted manner increases sharply, to a point where any
given bank is handling almost entirely withdrawals from other banks. Next we
will see what happens when we break the symmetry of the lending benefit.
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Figure 6: The blocking probability B∗1 , loss probability L and rerouting frac-
tion R as a function of resource link capacity, for ν = 100 and four different
rerouting intensities, M = 0, 1, 10, and 100. The optimal resource link ca-
pacities C1,opt are indicated by dots. As rerouting intensity is increased, the
fraction of withdrawals that each bank is rerouting through other banks grows
considerably, creating systemic connectivity. The loss probability is plotted on
a different vertical scale in order to illustrate the relevant region of interest. All
plots utilize the interest rate scenario (ωINV = 0.03, ωEXT = 0.09).

18



0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

rerouting attempts (M)

B
1*

0 10 20 30 40 50 60 70 80 90 100

0

0.05

0.1

rerouting attempts (M)

L

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

rerouting attempts (M)

R

0 10 20 30 40 50 60 70 80 90 100
80

100

120

rerouting attempts (M)

C
1

,o
p
t

0 10 20 30 40 50 60 70 80 90 100
80

100

120

rerouting attempts (M)

C
o
s
t(

C
1
,o

p
t)

Figure 7: The blocking probability B∗1 , loss probability L and rerouting fraction
R at the optimal resource capacity C1,opt, in addition to C1,opt itself and the
minimal cost, all as a function of varying the rerouting attempts count M . The
discontinuous jumps in B∗1 and R correspond to downward shifts in the optimal
resource link capacity. Notice that beyond M = 10, the cost benefit of further
rerouting is no longer significant, while the connectivity (R) continues to rise
considerably. Again the traffic intensity is ν = 100 and the interest rate scenario
is (ωINV = 0.03, ωEXT = 0.09).
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4.2 Default risk
We now aim to modify the cost minimization problem from section 3.5 to ex-
plicitly incorporate a cost for loan defaults. In addition to the terms of the
previous cost function, we add a loan default term given by the probability of
default ρ times the fraction of all offered traffic that is routed via other banks,

Copt = argminC1,C2∈Z+ ωINV C1 + ωEXT νL

+ρνB∗1

(
1− [1− (1−B∗1)(1−B∗2)]

M
)

(49)

Copt = argminC1,C2∈Z+ ωINV C1

+ωEXT νB
∗
1 [1− (1−B∗1)(1−B∗2)]

M

+ρνB∗1

(
1− [1− (1−B∗1)(1−B∗2)]

M
)
.

(50)

As the default risk ρ is increased, we observe a rapid transition in optimal lending
strategy similar to a phase transition from physical systems, where the benefit of
lending participation transitions discontinuously to a detriment beyond a critical
probability of default ρ∗. To examine this critical transition in detail, Figure 8
plots the marginal cost function over interbank capacities C2 and default risks
ρ, where the resource capacity C1 has already been optimized out. The other
parameter values are ν = 100, M = 10, ωINV = 0.03, ωEXT = 0.09.
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Figure 8: The marginal cost function for different interbank capacities C2 and
default risks ρ, where the choice of resource capacity C1 has already been opti-
mized out. The optimal C2,opt(ρ) is bolded, illustrating how C2,opt transitions
abruptly from ∞ to 0. The other parameters are ν = 100, M = 10, and the
interest rate scenario is (ωINV = 0.03, ωEXT = 0.09).
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To more broadly characterize the critical transition, Figure 9 presents the
effect of the default risk ρ upon the blocking probability B∗1 , loss probabil-
ity L, rerouting fraction R, optimal capacities Copt = (C1opt,, C2,opt), and the
minimized cost. The calculations are again run for parameter values ν = 100,
ωINV = 0.03, ωEXT = 0.09, and M = 10. We see that under the inter-
est rate/traffic scenario being studied, the phase transition at approximately
ρ∗ = .059 causes a discontinuous rise in the loss probability.

This transition implies that there is a critical probability of default risk at
which rational participants in an optimized Interbank Lending Network will
simultaneously stop lending, leading to a ‘collapse’ of the lending network. This
would in turn rapidly push large amounts of loan traffic to the external money
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Figure 9: The blocking probability B∗1 , loss probability L, rerouting fraction R,
optimal resource capacitiy C1,opt, and minimized cost, as the probability of loan
default, ρ, is varied. The critical transition point for C2,opt is shown (dashed)
alongside C1,opt. The traffic intensity is ν = 100, the rerouting intensity is
M = 10, and the interest rate scenario is (ωINV = 0.03, ωEXT = 0.09).
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market, and in a more accurate model, this would realistically increase the cost
of external lending considerably (for the purposes of our discussion, LIBOR),
and a widespread liquidity crisis would become plausible.

It is important to note that there are many unrealistic assumptions behind
this model, in particular the symmetry of bank traffic. The purpose of the essay
is not to offer a definitive or even notably accurate model of interbank lending,
but rather to illustrate the problematic fragility of lending systems in general.

4.3 Critical default risk
Here we return to the significance of the interest rate parameters ωINV , the
costs of investment capital, and ωEXT , the cost of external funds. Throughout
sections 3 and 4, we have been operating under a single interest rate scenario,
(ωINV = 0.03, ωEXT = 0.09). This scenario was chosen because it is a repre-
sentative non-trivial choice that illustrates well the intricacies of the problem.
We will now briefly show how the critical risk depends upon the interest rate
parameters.

In Figure 10 we present the critical risk ρ∗, and its surprisingly simple de-
pendence upon the two interest rates, calculated at ν = 100 and M = 10. We
have tried to derive a simple expression for ρ∗ by studying the cost function in
(50) and the difference between the optimal C1 conditioned upon the competing
scenarios C2 = 0 and C2 = ∞, but because this involves the optima of opti-
mization problems evaluated over terms derived from fixed point calculations,
no simple form has presented itself.

Also shown in Figure 10 is the change in loss probability when the phase
transition occurs, also generally considered as a function of the interest rate
parameters. We again emphasize that a sudden large increase in the external
lending traffic would undoubtedly have an effect upon the interest rate for exter-
nal funds, which clearly raises questions about the optimality of the ‘optimal’
behavior. This feedback mechanism complicates the procedure considerably,
and we let it remain a subject for future study.
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Figure 10: (Above) The critical value of the probability of default, ρ∗, plotted
as a function of the alternative investment opportunity interest rate, ωINV , and
the interest rate for external funds, ωEXT . (Below) The corresponding change
in the loss probability L at the critical point. We see that when ωINV > ωEXT ,
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5 Conclusions and future directions
In this essay we have presented a model of interbank lending developed using
the mathematics of network resource management. We have used the model to
study the effects of lending upon the efficiency of liquidity management, given
a complete network of symmetric bank traffic. Furthermore, we have examined
the emergence of systemic connectivity in the model, and noted how the risk
of loan defaults creates a phase transition in optimal resource management
strategy. We observe that a small change in default risk can therefore lead to a
systemic liquidity crisis.

The assumptions of traffic symmetry is a key assumption that distances the
results measurably from real banking systems [6, 7]. Techniques for analyzing
non-symmetric traffic within the loss network framework exist [4], and abso-
lutely merit application in future studies. Such an analysis has the potential
to characterize the often-discussed question of what effect comparatively large
banks have upon a lending market, potentially providing important insight into
the matter of how and when banks become ‘too big to fail’. Recent popular dis-
cussions have suggested that larger banks should perhaps be required to keep
a larger percentage of their funds as reserve requirement. These suggestions
seem loosely based upon an intuition that when a single bank is much larger
than the other agents of the lending market, its liquidity also fluctuates on a
different order of magnitude than the other agents, meaning that it can have a
very difficult time obtaining loans at the order of magnitude it may periodically
require, should it encounter a sizable drift in available liquidity. Therefore large
banks may need to manage the volatility of their liquidity more independently,
keeping more liquidity on hand than other smaller agents. The thoughts noted
here are only speculation, but an investigation into ’too big to fail’ scenarios is
a natural extension of the work presented in this essay.

The restriction to cooperative resource management strategies, where all
network agents make the same resource capacity decisions, is also notably dif-
ferent from the non-cooperative reality of lending markets. In reality, each bank
decides on its own how much resource capacity to keep on hand, and to what ex-
tend it should accept or apply for interbank loans. This transforms the problem
into a high-dimensional non-cooperative multiplayer game, which is more than
we’ve been able to consider in this introductory study. A game theoretic con-
sideration of the systems studied in this essay would make for very interesting
future work.

Lastly, the model could also be refined to more closely describe the day-to-
day operation of the lending market. In reality, central bank lending markets
generously allow for intraday ‘daylight overdraft’, and banks are only forced to
bring themselves into compliance with reserve requirements at the close of the
market. This operational detail can lead to very complex intraday behavior [8],
parts of which are game-theoretic in nature, and should not be disregarded.

As a closing acknowledgment, the ‘efficiency-induced fragility’ perspective of
interbank lending networks presented in this essay is inspired by (though notably
different in nature from) classic robustness conservation laws from control theory
[9] and more recent results from systems biology [10, 11].
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