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1. Introduction

The discovery of the genetic code, initiated by the discovery of the structure of DNA
by Watson and Crick in 1953, fundamentally changed the nature of biological sci-
ence. With the identification of genes came the understanding that biological systems
were dominated by vast information processing systems, thecomplexity of which
have only now begun to be understood. Concurrently, the nascent field of systems
engineering was being developed to tackle the growing challenge of organizing com-
plex artificial systems emerging in the early days of spacecraft design and computer
architecture. These two fields have now merged in the form of the interdisciplinary
field of systems biology, where the tools of systems engineering are now helping to
organize our understanding of biological systems, with remarkable success.

By viewing cells as modular systems of systems, systems biology helps to ana-
lyze incredibly complex biological problems, and often this understanding has helped
reveal even more (and often quite subtle) complexity. Systems biology has helped to
raise fundamental questions of architecture, such as the ’highly optimized tolerance’
and ‘robust yet fragile’ conceptual frameworks of system design [Carlson and Doyle,
1999; Carlson and Doyle, 2002]. Historically, one of the most successful applications
of the systems engineering perspective has been the analysis of genetic regulatory
networks [Jacob and Monod, 1961; Glass, 1975].

Genetic regulatory networks consist of interacting genes and proteins that are dis-
tributed throughout a cell and interact in a network of activation and repression. Each
gene codes for a specific protein, many of which go on to activate or repress other
genes in the organism by binding to the genes astranscription factors. Activationof a
gene occurs when a protein binds to the DNA region near the gene and facilitates the
initiation of transcription by RNA Polymerase (RNAP) molecules, whilerepression
of a gene occurs when a protein binds to the DNA region near thegene and inhibits
this initiation.

Transcription by RNAP results in the production of messenger RNA (mRNA)
macromolecules. These mRNA molecules are then freely translated by ribosomes,
which bind to the mRNA and systematically translate the genetic code to assemble
specific proteins. These proteins then often serve as the very transcription factors that
return to activate or repress genes, while mRNA serves an intermediate role in the
dynamics [Albertset al., 2003].

In the context of systems and control, these networks then exhibit familiar feed-
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Figure 1.1 The central dynamics of molecular biology. Regions of DNA called genes are
transcribed to form mRNA, which are then translated to form proteins. Some proteins then act
as transcription factors, regulating gene expression by binding to the promoter site as either an
activator or repressor, while other proteins go on to perform a wide range of functions with the
cell. In this figure, repression is shown.
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Figure 1.2 Three basic genetic regulatory networks that will be explained and examined
in this work. Clockwise from top left, the bistable toggle switch, the ring oscillator, and the
hysteresis-based oscillator are shown. Introducing delays to the transcriptional pathways can
drastically effect the stability of the system models.

back dynamics [Alon, 2007]. Auto-repression, whereby a gene expresses a protein
that then represses its own gene, and thereby down-regulates its own production, is a
classic form of feedback moderation in genetic regulatory networks. Auto-activation,
whereby a gene expresses a protein that activates its own gene, can be used to amplify
a response to an initial input signal. These two forms of autoregulation together occur
more than 40 times in theE. coli genetic regulatory network [Alon, 2007]. During
the past decade, principles of control theory have helped toilluminate these complex
interaction networks that are so common in engineering.

Beyond simple autoregulation, common ‘motifs’ in networkshave been identified
across a wide range of organism genomes [Miloet al., 2002]. These network motifs
appear as small, task-specific modules embedded in a larger context. For example,
feedforward motifs [Mangan and Alon, 2003] in different arrangements appear to
be widely used by cells to accelerate or delay signaling. Network motifs enable a
modular architecture for biological signaling, and the emergence of this modularity
can be explained directly by evolutionary forces [Kashtan and Alon, 2005].

Ultimately one of the grandest challenge in cellular information processing is
noise [Kaernet al., 2005]. The cellular signaling environment is dominated bybrow-
nian motion, and at low molecular concentrations, the inherent randomness of the
biochemical reactions tends to dominate the cellular dynamics. While some pro-
cesses intentionally utilize stochasticity to achieve phenotypic heterogeneity [Raser
and O’Shea, 2005], in most tasks this variability is highly undesirable. To tackle this
challenge, principles of control theory have been utilizedto engineering stability into
genetic regulatory networks [Becskei and Serrano, 2000].

This emerging field of bioengineering stability is the central subject of this thesis.
Where previous work has focused on reaction network topologies [Hastyet al., 2002],
this thesis develops principles for tuningdelaysin genetic regulatory networks as a
means towards engineering stability. In this work we examine the role of delay in
both stochastic and deterministic models of genetic regulatory networks, developing
a theory for delay sensitivity and tuning.

In [Uganderet al., 2007], the consequences of delay upon stability were discussed
as part of an analysis of one specific oscillatory network, a toggle oscillator, which
was delayed using extended transcriptional pathway cascades, a means of delay that
is prohibitively complex for practical bioengineering. Inthis thesis the study of delay
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Chapter 1. Introduction

is generalized, and the possibility of embedding delays directly into the genome is
studied, by a much more practical mechanism. It is our hope that this work will con-
tribute a useful design principle for controlling noise in genetic regulatory networks,
and hopefully play a role in advancing the rapidly developing and increasingly excit-
ing field of bioengineering.
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2. Stochastic Simulation

In this chapter, we examine detailed, stochastic models of genetic regulatory net-
works, using a discrete, probabilistic framework true to the discrete, probabilistic
dynamics of biochemical systems. While the inherent complexity of such modeling
limits the extent to which solid conclusions can be drawn, our goal with this analysis
is merely qualitative insight, while a more tractable delay-differential equation (DDE)
formulation presented in the next chapter will offer precise metrics for stability anal-
ysis. We examine both stable and oscillatory regulatory networks, and attempt to
analyze the delay- dependent stability of their attractors. For the biochemical oscilla-
tors, we present computational results that demonstrate the delay-dependent stability
of the limit cycles underlying the stochastic dynamics, introducing delay tuning as a
novel means of bioengineering stability in genetic regulatory networks.

2.1 The Chemical Master Equation

The Chemical Master Equation (CME) is a system of ordinary differential equations
describing the time evolution of the probability distribution of a system across pos-
sible concentration states. In biochemical systems, reaction events constitute state
transitions between concentration states, in what amountsto a large continuous-time
Markov process. The CME modeling approach is based on reactions within a con-
fined and well-mixed vessel, and assumes that collisions arefrequent, while collisions
with proper energy and orientation (leading to reactions) are relatively infrequent.
Furthermore, it is only strictly correct for reactions between at most two reactants
[Van Kampen, 2007]. The basic CME also assumes that reactions are instantaneous,
and not delayed, requiring a modification which we will return to later. In what is a
fully Markovian framework, instantaneous reactions (collisions) are modeled as Pois-
son distributed events. For biochemical systems, the set ofpossible discrete molec-
ular concentration arrangements define the set of possible states, typically the semi-
infinite discrete setZn

+.
Let us introduce a basic system of gene expression as an example. When model-

ing the expression of a particular mRNA and protein pair, thestate would be given
by the count of molecules in the system,x = (#mRNA,#protein) ∈ Z

2
+. The number

of copies of ‘Gene’ is assumed to be constant, and is therefore not part of the state.
The dynamics of the system would be described by the following four reactions,

Gene
k1−→ Gene+mRNA (2.1)

mRNA
k2−→ mRNA+Protein

mRNA
k3−→ /0

Protein
k4−→ /0,

whereki are the reaction rates. The state space and transitions for this system are
summarized in Figure 2.1 below.

It is important to note that the transition propensities arenon-uniform, as the birth
process for protein is a first order reaction dependent upon the number of mRNA
molecules in the system. Likewise, the propensities of the decay reactions are de-
pendent upon the concentrations of the decaying molecules as well. In this simple
example, the reactions are all simple birth and death reactions, but more complicated
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mRNA

Protein

Figure 2.1 The semi-infinite state-space lattice for a basic mRNA-protein system.

stoichiometries can lead to a complicated mesh of transition arrows. Furthermore, the
state space of systems with many species becomes a high-dimensional lattice, where
30 or more species is not uncommon for basic systems. The transition pathways are
however sparse for almost all systems. With further emphasis, it is important to un-
derstand that this is not merely a uniform random-walk, but that the state-dependent
propensities, which for second-order reactions are nonlinear, lead to a highly non-
trivial energy landscape that in turn governs the time evolving probability density
function of the system.

Generally, the Chemical Master Equation is written as

d
dt

Pi(t) = ∑
j∈I

ai j Pj(t), ∀i ∈ I , t > 0, (2.2)

Pi(0) = P0
i , ∀i ∈ I , (2.3)

where (2.3) is the initial condition,Pj(t) is the probability of being in statej at timet,
I is the countable index set of the state space, andai j is the transition propensity from
state j to statei. For first-order reactions, the propensity is given by the product of
the reactant concentration and the reaction rateki , in appropriate units. For the simple
example introduced above, the CME becomes, with the obviousindexing:

d
dt

P(n,m)(t) = −a(n,m)P(n,m)(t)+ (2.4)

a(n−1,m)P(n−1,m)(t)+a(n+1,m)P(n+1,m)(t)+

a(n,m−1)P(n,m−1)(t)+a(n,m+1)P(n,m+1)(t), ∀n,m∈ Z+

d
dt

P(n,m)(t) = −

(

k1 +k3n+k2n+k4m

)

P(n,m) + (2.5)

k1P(n−1,m)(t)+k3(n+1)P(n+1,m)(t)+

k2nP(n,m−1)(t)+k4(m+1)P(n,m+1)(t), ∀n,m∈ Z+

whereki are the reaction rates from (2.1), in the appropriate units.Minor, straight-
forward modifications are required at the boundariesm= 0 andn = 0.

Notice that this is merely an infinite, sparse, linear systemof differential equa-
tions, and for systems with modestly compact support, meaning that only a manage-
ably few number of states at any time have probability over a given small threshold,
the state space can be truncated and the time-evolving probability distribution can
be found with impressive precision by the method of Finite State Project (FSP), see
[Munsky and Khammash, 2006]. The FSP method allows for the application of ele-
gant linear systems theory, but is however only an efficient approximation for smaller
systems or for studying equilibrium dynamics of at most medium-sized systems, and
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2.1 The Chemical Master Equation

we will not employ it here. Protein concentrations, which can easily number in the
thousands within a given cell, quickly lead to a prohibitively large state space. It is
also worth briefly mentioning that hybrid solvers have been developed, that combine
discrete, stochastic and continuous, deterministic modeling, for systems with multi-
scale dynamics [Haseltine and Rawlings, 2002; Tian and Burrage, 2004], though
these solvers have yet to be rigorously analyzed for correctness.

As a further comment, the CME is in fact a discrete-state-space analog to the
Fokker-Planck Equation, where the state space is instead continuous, and a high-
dimensional PDE formulation results. This connection has been exploited to perform
discrete-to-continuous approximations, where the CME is approximately solved as a
Fokker-Planck formulation applying numerical methods forPDEs, see [Sjöberget al.,
2008] for details.

The preferred method for analyzing probabilistic models ofbiochemical sys-
tems is Monte Carlo simulation, by applying what is commonlycalled the Gillespie
Stochastic Simulation Algorithm (Gillespie SSA) [Gillespie, 1976; Gillespie, 1977].
In 1976, Gillespie introduced two efficient methods for sampling trajectories from
the Chemical Master Equation, known as the Direct Method (DM) and First Reac-
tion Method (FRM). Various improved methods have been derived from these two
methods, the most notable being the Next Reaction Method (NRM) by Gibson and
Bruck [Gibson and Bruck, 2000]. However, recent analysis has shown that the Next
Reaction Method is not a universal improvement, and furtherrefinements have been
proposed by Petzold and colleagues [Caoet al., 2004; Li and Petzold, 2006], leading
to the Optimized Direct Method (ODM) and Logarithmic DirectMethod (LDM). In
this work, we will limit ourselves to the original Direct Method by Gillespie, and
ignore the debate regarding implementational details.

The Gillespie algorithm entails a straightforward simulation of one realization
from the stochastic biochemical system, randomly simulating one reaction at a time.
The algorithm below is presented forSspecies andN reactions. We also introduce the
notationan to denote the propensity of reactionn, anda∑n := ∑n

k=1 ak to denote partial
sums across the reaction propensity vector. The termsRn and Pn refer to the state
changes for the reactants being removed and products being added during reactionn.
These merit separate notations in preparation for the delayed Gillespie algorithm yet
to come.

Algorithm 2.1 The Gillespie Direct Method
Require: Initial ConcentrationX = (X1, . . . ,XS), tend.

1: time t = 0
2: while t < tend do
3: Compute propensitiesan, n = 1, . . . ,N, at current stateX.
4: Generate uniform random numbersu1,u2 ∈ [0,1].
5: Compute time to next reaction,∆t = − ln(u1/a∑N).
6: Find reaction channeln, s.t.a∑n−1 < u2a∑N < a∑n.
7: Update StateX according toRn & Pn.
8: Updatet = t + ∆t
9: end while

Here we see that step 5 generates the time to the next reactionfrom an exponen-
tial distribution with the rate parameter given by the cumulative probability of any
reaction occurring, and step 6 subsequently selects a reaction by their relative prob-
abilities of occurrence. The implementational improvements mentioned earlier are
mostly concerned with minimizing recalculation of the propensities in step 3 and the
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Chapter 2. Stochastic Simulation

Δt
i

t
i

t
i+1

state updates

Figure 2.2 Reaction events during the Gillespie SSA simulation, whichoccur with expo-
nentially distributed time intervals, with a propensity taken by the overall propensity of any
reaction occurring.

sums in steps 5 and 6, in particular by using custom data structures to efficiently find
the reaction channel in step 6.

The Gillespie SSA results in a single trajectory drawn from the time-evolving
probability density function, and to fully understand the system, an ensemble of tra-
jectories is typically studied. In Figure 2.3, an ensemble of 100 simulated trajecto-
ries from the basic mRNA-protein expression system discussed above are presented
(showing only the protein expression), and such an ensembleprovides a confident
overview of the nature and variability of the system dynamics, here entering a steady-
state equilibrium between production and decay.

The Gillespie SSA approach has been remarkably successful at characterizing
the stochastic dynamics of biochemical reaction networks,despite its computational
complexity, see [McAdams and Arkin, 1997] for an early success story. Yet a se-
rious short-coming of the CME approach, as mentioned earlier, is its inability to
model reaction delays, since the approach assumes simple, instantaneous reactions,
and not abstract macro-reactions, such asmRNA→ mRNA+Protein, which in truth
is far from instantaneous. As computational resources havegrown, simulations have
been performed that model the movement of individual RNA polymerase (RNAP)
molecules along DNA (as well as ribosomes along mRNA) with base-pair resolution
[Kosuri et al., 2007; Kosuri, 2007]. This movement results in a cascade of Poisson
distributed events, thus incorporating delays within the Markovian framework and
respecting the delay time implicit in transcription and translation that is otherwise
ignored by the Gillespie approach involving abstract species. With gene lengths in
the thousands of base-pairs, this unfortunately requires athousand-fold increase in
computational effort, by replacing each birth reaction with a lengthy cascade of reac-
tions. This approach also introduces the possibility/challenge of modeling the colli-
sion dynamics of RNAP along the DNA, the mechanics of which have only begun to
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Figure 2.3 An ensemble of 100 trajectories for the basic mRNA-protein expression model,
simulated using the GIllespie stochastic simulation algorithm.

12



2.2 The Delayed Chemical Master Equation

emerge [Greive and von Hippel, 2005; Herbertet al., 2006; Tolic-Norrelykkeet al.,
2004; Epshtein and Nudler, 2003], and much is still unknown.Disregarding RNAP
collisions, the cascade of reactions used in base-pair resolution modeling is well ap-
proximated by delays, which brings us to the next section.

2.2 The Delayed Chemical Master Equation

Using delays to approximate reaction cascades is drastically more efficient than base-
pair resolution modeling, but this comes at the cost of breaking the Markov property
of the system. With delayed reactions, there are now reactions occurring “off-stage”
with delayed results, and these events are not part of the state description, but cer-
tainly effect the future of the system. In contrast, base-pair resolution modeling is
still Markovian, as the state of the system incorporates thelocation of RNAP along
the DNA, and all events are still memoryless.

The delay times used to approximate the reaction cascades can be expected to be
gamma distributed, owing to the property that the sum of i.d.d. exponential stochastic
variables is gamma distributed, a property that is noted in [Gibson and Bruck, 2000].
This is reality not true, since physical principles of causality require RNA polymerase
molecules to leave the DNA in the order that they attach. The matter then becomes
entangled in the aforementioned unresolved question of RNAP collision dynamics,
about which little is known. For this reason, in the absence of knowledge, the delay
times are modeled as constant for the set gene length, at an average rate of RNAP
transcription and translation of 45 bp/s [Phillipset al., 2008].

A delayed variant of the Chemical Master Equation can be formulated, withM
delay timescales, as:

d
dt

Pi(t) = ∑
j∈I

ai j Pj(t)+
M

∑
m=1

(

∑
j∈I

ai jmPj(t − τm)

)

. (2.6)

This is in fact a delay-differential equation (DDE), with similarities to the problems
we will be studying in the next chapter, but we will do not analyze the delayed CME
as a DDE, as its size makes it difficult to approach directly, and again the Monte
Carlo approach pioneered by Gillespie will be essential. The delayed Gillespie al-
gorithm requires only basic modifications in order to simulate trajectories from the
delayed CME. For the delayed Gillespie algorithm to be meaningful, we need to more
precisely define what it is we are modeling.

Let us again consider the example of basic gene expression, but now respect the
time delays inherent to transcription and translation. With this in mind, a more truth-
ful model of gene expression hasM = 4 delay timescales (for a single gene),

Gene(t)
k1−→ Gene(t + τps)+mRNA(t + τ1) (2.7)

mRNA(t)
k2−→ mRNA(t + τrbs)+Protein(t + τ2) (2.8)

mRNA(t)
k3−→ /0 (2.9)

Protein(t)
k4−→ /0. (2.10)

whereτps is the time it takes the RNAP to clear the promoter site where new RNAP
can then bind, about 1 second, andτ1 is the time until the ribosome binding site is
fully transcribed, making the mRNA free for translational initiation. Typically the
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Chapter 2. Stochastic Simulation

Gene1

RBS Gene1

Gene1

RNAP

DNA

mRNA

R

Protein

RNAP

RNAP

R

R

RNAP
RBS

RBS

Figure 2.4 Transcription and translation. Transcription initiates when an RNAP molecule
binds to thepromoter siteahead of a gene, shown here as a black arrow. It then begins tran-
scribing the gene, producing mRNA, until it reaches a stop sequence at the end of the gene.
Once the ribosome binding site (RBS) has been transcribed, ribosomes (green, marked R) bind
the the nascent mRNA transcript and begin translation and the production of Protein. When
transcription is completed, the mRNA molecule remains active for translation until decay, by a
process not shown here. Protein molecules remain active in their function until decay, also by
an process not shown here. Both transcription and translation occur at approximately 45bp/s
[Phillips et al., 2008].

ribosome binding site occurs nearly immediately after the promoter site, resulting in
τ1 being on the order of 5 seconds.

This idea that mRNA is active already after RBS-transcription relies on the ar-
chitecture of prokaryotes, whereby transcription and translation occur in the same
vessel, in the absence of the nuclear membrane found in eukaryotes. A schematic
illustration of the events of transcription and translation can be found in Figure 2.4.

In translation,τrbs is the time it takes theribosometo clear the ribosome binding
site (rbs), analogous to the time it takes the RNAP to clear the promoter site (τps) in
transcription, and is also about 1 second. The delayτ2 is the time it takes the protein
to be translated in full. By example, for the 1080 base-pairlacI gene commonly
used in synthetic biology, this amounts to 24 seconds. Theτ2 delay time can also
be thought to include the time it takes the protein to become biochemically ‘active’,
an activation that may entail potentially complex protein folding, or require post-
translational modification in various ways, andτ2 may therefore be drastically longer.
Such activation is however not considered in this study, butit should be kept in mind
as a potential window for delay engineering.

The primary window for delay engineering in this study isτ1, the delay time until
the ribosome binding site is transcribed. In prokaryotes, the ribosome binding site
can in fact be located a long distance away from the start of the mRNA transcript,
and it is not uncommon that multiple genes occupy the same mRNA transcript, tran-
scribed behind the same promoter site. Thus we present our novel delay engineering
approach, whereby it is fully possible to engineer a delay into a genetic network by
either inserting a lengthy block of ‘junk’ DNA ahead of the RBS, or by placing an-
other ‘dummy’ gene upstream of the relevant gene within the same mRNA transcript.
The latter approach can be seen as favorable, seeing as the neutrality of a randomly
chosen sequence of ‘junk’ DNA may be difficult to guarantee, with the possibility
of hairpins and other secondary structures introducing unwanted effects that would
not be caused by a properly chosen stable ‘dummy’ gene. A diagram of these delay
methods in shown in Figure 2.5, where an idea for eukaryotic delay engineering is
also briefly presented.

Let us now present the delayed Gillespie algorithm. At first glance, it may appear
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2.2 The Delayed Chemical Master Equation

Other Gene Delay:

RBS Gene1

RBS Gene1RBS GeneX

Junk Delay:

Gene1RBS

Introns

Intron Delay:

Figure 2.5 Delay methods. In order to delay the release of an active protein, we propose
two methods for delay engineering in prokaryotes. These methods entail modifying the DNA
surrounding the gene by inserting either a ‘junk’ delay, or an intermediate ‘dummy’ gene ahead
of the gene targeted for delay. For eukaryotes, it is possible to view intron/exon splicing as a
means of delay, and lengthy introns can achieve a similar delay effect. With this approach,
introns are revealed as more than ‘junk’ DNA, serving to tunethe temporal dynamics of the
genetic regulatory network.

Δt
i

t
i

t
i+1

τps

τ1

remove

Gene

release Gene release mRNA

Figure 2.6 Reaction events during the delayed Gillespie SSA simulation. Diagram borrowed
from [Barrioet al., 2006] (supplementary text).

significantly more complicated that the nominal Gillespie algorithm. The differences
are however straight-forward. For non-delayed reactions,everything is the same. For
delayed reactions, the reactantsRn are removed in the same fashion, while the prod-
uctsPn1, . . . ,Pnk are sorted into the simulatorsdelay queue, which is easily maintained
as a linked list data structure. The possibility for multiple product release times is
no major complication, and as we saw above, the biochemical reactions we will be
modeling require two product release events. The product events are assumed to be
ordered, withτn1 < .. . < τnk. The event time for the most immanent delay product
is maintained in the variabletd1, and when the simulation crosses this event time,
the most immanent delay event occurs as an interruption. Therelevant products are
introduced, and the simulation restarts from this event time. The memoryless prop-
erty of the exponential distribution makes this possible. Adiagram of the sequence
of reaction events during a simulation can be seen in Figure 2.6.

One of first formal attempts at constructing a delayed formulation of the Gillespie
algorithm came in the work of [Bratsunet al., 2005], but they unfortunately present
a flawed algorithm. In the work of [Barrioet al., 2006] and most carefully [Cai,
2007], the mistakes are resolved, and agreement with the delayed Chemical Master
Equation is shown. In the original algorithm due to Bratsun et al., line 15 of the
delayed Gillespie algorithm (as it is presented here) is incorrectly restricted to only
occurring when the selected reaction is non-delayed, whichneglects to include the
time it takes a delayed event to randomly occur, prior to the start of the delay wait.
For a detailed analysis, see [Cai, 2007].
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Chapter 2. Stochastic Simulation

Algorithm 2.2 The Delayed Gillespie Direct Method
Require: Initial ConcentrationX = (X1, . . . ,XS), tend.

1: time t = 0
2: while t < tend do
3: Compute propensitiesan, n = 1, . . . ,N, at current stateX.
4: Generate uniform random numbersu1,u2 ∈ [0,1].
5: Compute time to next reaction,∆t = − ln(u1/a∑N).
6: if t + ∆t < td1 then
7: Find reaction channeln, s.t.a∑n−1 < u2a∑N < a∑n.
8: if (Reactionm is a delayed reaction)then
9: Update StateX according toRn.

10: PlacePn1, . . . ,Pnk into delay queue att + τn1, . . . , t + τnk.
11: td1 = min(td1, t + τn1).
12: else(Reactionn is not delayed reaction)
13: Update StateX according toRn & Pn.
14: end if
15: Updatet = t + ∆t
16: else(Run delayed reaction scheduled attd1)
17: Update StateX according toPd1.
18: Updatet = td1.
19: Pop delay queue (td1 = td2, etc.).
20: end if
21: end while

2.3 Delay-dependent stability

Our goal is to analyze the delay-dependent stability of attractors for biochemical sys-
tems of interacting genes and proteins, also known as genetic regulatory networks.
In a stochastic setting, this amounts to studying the variance of the attractor distribu-
tions, as sampled across an ensemble of trajectories from delayed Gillespie stochas-
tic simulations. Because such simulations are so computationally intensive, we have
chosen to present simulation ensemble distributions at only a sparse grid of delay
parameters for the networks we study. This should lead the reader to develop a sat-
isfactory intuition, and we provide a more rigorous analysis using delay-differential
equations and Floquet theory in the next chapter.

This crude approach is due to the fact that methods of sensitivity analysis for
stochastic CME models are currently only in their infancy. There have been limited
advances regarding sensitivity analysis for stationary systems, which try to develop
computationally tractable correlates of sensitivity [Gunawanet al., 2005; Cao and
Petzold, 2006] with some success. In a very elegant application of measure theory for
non-delayed systems, Girsanov measure transforms [Plyasunov and Arkin, 2007] can
be used to very quickly compute the sensitivity of various functionals with respect to
reaction rate parameters. This method is however not applicable to delayed systems,
and especially not to delay parameters.

We apply our analysis to three genetic regulatory networks,(1) the Gardner toggle
switch, (2) the Elowitz repressilator, and (3) the Barkai-Leibler relaxation oscillator.
The stochastic dynamics of the toggle switch is shown to primarily exhibit robust
indifference to delay manipulations, while the stability of the limit cycles underlying
the stochastic oscillators is shown to be highly tunable through delay engineering.
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2.4 Analysis: Toggle Switch

First, we study the delay-dependent stability of the Gardner toggle switch genetic
regulatory network [Gardneret al., 2000]. The toggle switch is one of a few ‘clas-
sic’ synthetic genetic regulatory networks, and along withthe repressilator, one of
the few to have been built and studiedin vivo in E. coli, where its functionality has
been validated. The toggle switch is a bistable network where one of two protein con-
centrations can be stably expressed, resulting in a phase space with two stable fixed
points, and effectively offering a digitalbit of memory storage. We wish to examine
the stability of these stable fixed points as delay is introduced into the network. By
examining the steady-state distribution surrounding the stable attractors (when one
of the concentrations is ‘high’), we can study the effects ofdelay upon stability.

A B

Figure 2.7 A schematic diagram of the Gardner toggle switch genetic regulatory network.

A schematic diagram of the toggle switch regulatory networkis shown in Fig-
ure 2.7, while a more complete view of the reactions that makeup the full network
is presented in Table 2.4. The repression mechanism used in this model features two
operator sites, effectively serving as a combinatorial OR gate [Alon, 2007]. This de-
sign choice was made to strengthen the repression activity and minimize attractor
crossover, where stochastic fluctuations induce a ‘flipping’ of the toggle switch. The
repression mechanism and overall parameterization is taken from the original model
of the repressilator [Elowitz and Leibler, 2000] analyzed next.

Figure 2.8 shows histograms over the(PA×PB) phase space surrounding the sta-
ble fixed point, at four different delay parameterizations.First, we consider the nom-
inally delayed model (τ1A = τ1B = 5 seconds, top left), which incorporates the delays
inherent to transcription and translation, but the system has not been synthetically
delayed in any way. This model is then compared to models withconsiderable (200

Transcription & Translation Promoter region Decay

GeneA0(t)
k1−→ GeneA0(t + τps)+MA(t + τ1A) GeneA0 +PB

k3−→ GeneA1 PA
k6−→ /0

GeneA1(t)
ε ·k1−−→ GeneA1(t + τps)+MA(t + τ1A) GeneA1

k4−→ GeneA0 +PB MA
k7−→ /0

GeneA2(t)
ε ·k1−−→ GeneA2(t + τps)+MA(t + τ1A) GeneA1 +PB

k3−→ GeneA2

MA(t)
k2−→ MA(t + τrbs)+PA(t + τ2A) GeneA2

k5−→ GeneA1 +PB

GeneB0(t)
k1−→ GeneB0(t + τps)+MB(t + τ1B) GeneB0 +PA

k3−→ GeneB1 PB
k6−→ /0

GeneB1(t)
ε ·k1−−→ GeneB1(t + τps)+MB(t + τ1B) GeneB1

k4−→ GeneB0 +PA MB
k7−→ /0

GeneB2(t)
ε ·k1−−→ GeneB2(t + τps)+MB(t + τ1B) GeneB1 +PA

k3−→ GeneB2

MB(t)
k2−→ MB(t + τrbs)+PB(t + τ2B) GeneB2

k5−→ GeneB1 +PA

Table 2.1 The complete set of reactions behind the delayed toggle switch model. The delays
are confined to the transcriptional and translational reactions, and timing arguments have been
omitted from the instantaneous reactions. The subscript notation for the genes refers to how
many proteins are bound to the gene as transcription factors: GeneX0 is an actively transcribing
gene, whileGeneX1 andGeneX2 are both repressed, with some leakage transcription included
in the model (ε = 10−3). The delaysτ1A and τ1B are explicitly different, to emphasize the
subsequent independent investigation. The translation delaysτ2A,τ2B assume generic 1000bp
genes. For reaction rate parameters, see [Elowitz and Leibler, 2000].
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Figure 2.8 Histograms across the projected phase space at four different delay parameteriza-
tions, when the toggle switch resides in the (PA =Off, PB =On) basin of attraction. Examining
300 simulated hours of data, we see little change in the steady-state distribution. The his-
togram colormap is logarithmic in scale, seeing as the system spends the majority of its time
nearPA = 0. Notice the difference in scale betweenPA andPB.

second) transcriptional delays incorporated in either Gene A, Gene B, or both.
Comparing the histograms shows that the effect of syntheticdelays (on either

transcriptional pathway) upon the stability of the toggle switch is difficult to identify
conclusively, and appears to be negligible or nonexistent.The DDE analysis per-
formed later will corroborate this finding, though in fact show that the stability of the
system is slightly reduced for extremely long delays, whenτ > 500 seconds. This
direction of change agrees with the traditional understanding of delays within con-
trol and dynamical systems, that retarded feedback mechanisms result in decreased
stability for equilibrium points.

From our stochastic model analysis, we conclude that the toggle switch does not
exhibit any significant sensitivity to delay. Our analysis becomes considerably more
interesting when we turn our attention to oscillatory networks in the following two
sections.

2.5 Analysis: Repressilator

Next, we study the delay-dependent stability of the Elowitz‘repressilator’, an oscil-
lator consisting of three genes expressing proteins that repress each other in a ring
[Elowitz and Leibler, 2000]. As opposed to the functional toggle switch, when the
repressilator is studiedin vivo in E. coli, its oscillations are evident but disappoint-
ingly far from regular. This irregularity is a central motivation for this thesis, and
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A B C

Figure 2.9 A schematic diagram of the Elowitz repressilator genetic regulatory network,
featuring three genes that express proteins that act as transcription factors, repressing each
other in a ring.

engineering stability into synthetic regulatory networkssuch as the repressilator can
be considered a leading challenged in the emerging discipline of synthetic biology.
With the investigation of delay-dependent stability presented here, novel engineering
principles emerge that may be used to increase the stabilityof the oscillator.

A schematic diagram of the regulatory network is shown in Figure 2.9. The dia-
gram offers an effective overview of the regulatory network, while once again a more
extensive documentation of the reaction network is shown inTable 2.5. Like the tog-
gle switch, the repression mechanism used in this model features combinatorial OR
gates. This approach is consistent with the stochastic model (without delays) used in
the original repressilator paper [Elowitz and Leibler, 2000]. Combinatorial operators
were chosen to obtain cooperatively in repression analogous to the ODE modeling
approach in the same paper, which is the basis for our DDE model seen later.

First we will study the nominally delayed model. A comparison of the published,
non-delayed model and the nominally delayed model can be seen below in Fig-
ure 2.10, presented as trajectories in the three-dimensional state space(PA×PB×PC).
Under a general principle of ergodicity, we have chosen to study one trajectory sam-
ple for a ‘long time’, rather than an ensemble of trajectories. We see in the figure that
the non-delayed model exhibits a notably different energy landscape inferable from
the phase-space trajectories, compared to the more correct, nominally delayed model.
In the nominally delayed model, we observe more densely concentrated behavior,

Transcription & Translation Promoter region Decay

GeneA0(t)
k1−→ GeneA0(t + τps)+MA(t + τ1) GeneA0 +PC

k3−→ GeneA1 PA
k6−→ /0

GeneA1(t)
ε ·k1−−→ GeneA1(t + τps)+MA(t + τ1) GeneA1

k4−→ GeneA0 +PC MA
k7−→ /0

GeneA2(t)
ε ·k1−−→ GeneA2(t + τps)+MA(t + τ1) GeneA1 +PC

k3−→ GeneA2

MA(t)
k2−→ MA(t + τrbs)+PA(t + τ2A) GeneA2

k5−→ GeneA1 +PC

GeneB0(t)
k1−→ GeneB0(t + τps)+MB(t + τ1) GeneB0 +PA

k3−→ GeneB1 PB
k6−→ /0

GeneB1(t)
ε ·k1−−→ GeneB1(t + τps)+MB(t + τ1) GeneB1

k4−→ GeneB0 +PA MB
k7−→ /0

GeneB2(t)
ε ·k1−−→ GeneB2(t + τps)+MB(t + τ1) GeneB1 +PA

k3−→ GeneB2

MB(t)
k2−→ MB(t + τrbs)+PB(t + τ2B) GeneB2

k5−→ GeneB1 +PA

GeneC0(t)
k1−→ GeneC0(t + τps)+MC(t + τ1) GeneC0 +PB

k3−→ GeneC1 PC
k6−→ /0

GeneC1(t)
ε ·k1−−→ GeneC1(t + τps)+MC(t + τ1) GeneC1

k4−→ GeneC0 +PB MC
k7−→ /0

GeneC2(t)
ε ·k1−−→ GeneC2(t + τps)+MC(t + τ1) GeneC1 +PB

k3−→ GeneC2

MC(t)
k2−→ MC(t + τrbs)+PC(t + τ2C) GeneC2

k5−→ GeneC1 +PB

Table 2.2 The complete set of reactions behind the delayed Elowitz repressilator model.
The translation delays(τ2X) are given by the lengths of the genes from the original design,
(1080, 675, 858) base pairs at 45bp/s results in(τ2A,τ2B,τ2C) = (24,15,19) seconds. All
other delays are the same as for the toggle switch. For reaction rate parameters, see [Elowitz
and Leibler, 2000].
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Figure 2.10 A comparison between the (above) non-delayed and (below) nominally delayed
( τ1 = 5 s) stochastic models of the repressilator. To the left, we see 12 hours of time series data
for the protein concentrations in the system, after the system has entered steady-state. To the
right, we see a phase space (PA×PB×PC) showing 48 hours of simulated behavior. From the
phase space diagrams it is evident that the model incorporating delay features a significantly
more attractive limit cycle, with fewer extreme oscillations.

with fewer extremal oscillations, and we also see evidence of a stronger repelling
force away from the equilibrium point at the center of the oscillator. Qualitatively
speaking, we see that the delayed model oscillates along a more stable limit cycle.
Does this improvement continue when we introduce syntheticdelays?

When we modify the delay timeτ1 for the three genes, as suggested earlier and
diagrammed in Figure 2.5, we see that the trend continues. Figure 2.11 shows his-
tograms across the phase space, projected into the plane normal to the equilibrium
axis (PA = PB = PC), at 4 different delay parameterizations. First the nominaldelay
of τ1 = 5 seconds, and then with increasing delays of 105, 205, and 305 seconds,
assuming ‘junk’ of ‘other gene’ regions corresponding to 100, 200, and 300 seconds
of delay.

In Figure 2.11, the normalized stationary autocorrelationfunctions forPA(t) are
also included at each delay configuration. These functions clearly show how the auto-
correlation peaks at integer multiples of the oscillation period become much stronger
as delays are introduced. Without synthetic delay, the autocorrelation is washed out
by oscillator phase noise, muddling the peaks. The strengthening of these peaks of-
fers a good quantification of oscillator stability improvement for the repressilator
stochastic model, but unfortunately, a similar analysis for the relaxation oscillator in
the next section will say almost nothing at all. Therefore wecan not rely on these
autocorrelation peaks as a measure of oscillator stability.

For the repressilator, increasing the delay on all three constituent genes appears
to increase the stability of the limit cycle attractor at thecore of the stochastic dynam-
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2.6 Analysis: Relaxation oscillator

Figure 2.11 Histograms across the projected phase space at four different delay parameteri-
zations, along with the autocorrelation function ofPA(t) at that parameterization. The delay is
increased on all three genes. Examining 1440 simulated hours of data, we see that as delay is
introduced, a ‘hole’ in the limit cycle becomes evident, caused by increased repelling forces
away from the equilibrium point at the center of the oscillator. The autocorrelation functions
clearly show how the autocorrelation between cycles of the oscillator are attenuated by delay,
overpowering the phase noise that muddles the nominal oscillator.

ics. Based on simulation data not shown here, this improvement is in fact the result of
identical contributions from all three individual genes, and while it breaks the sym-
metry of the oscillator limit cycle, it is fully possible to delay only one gene and see an
improvement in the attractor stability. But inquiries suchas this require prohibitively
large simulation efforts to investigate fully, since a computationally massive simula-
tion must be run at each parameter configuration. In depth investigations are much
more feasible using the computationally tractable DDE stability analysis that follows
in the next chapter.

2.6 Analysis: Relaxation oscillator

Lastly, we study the delay-dependent stability of the Barkai-Leibler relaxation os-
cillator. The relaxation oscillator was developed by Barkai and Leibler [Barkai and
Leibler, 2000; Vilaret al., 2002] based on a straightforward hysteretic construction,
whereby a primary gene activates itself and an associate gene, which in turn represses
the primary gene in a delayed fashion or on a slower timescale. Transcriptional regu-
lation is used for activation, and a hypothetical direct protein-protein interaction be-
tween proteins A and B is used to form a decaying protein C, see[Barkai and Leibler,
2000] for details. A schematic diagram of the network is shown in Figure 2.12, and
the details of the reaction network are show in Table 2.6. In contrast to the toggle

A B

Figure 2.12 A schematic diagram of the Barkai-Leibler relaxation oscillator genetic regula-
tory network. The protein C is now shown in the diagram, but serves as an intermediate species
along the decay pathway when protein B represses A directly.
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Transcription & Translation Promoter region Decay

GeneA0(t)
ε ·k1−−→ GeneA0(t + τps)+MA(t + τ1A) GeneA0 +PA

k3−→ GeneA1 PA
k5−→ /0

GeneA1(t)
k1−→ GeneA1(t + τps)+MA(t + τ1) GeneA1

k4−→ GeneA0 +PA MA
k6−→ /0

MA(t)
k2−→ MA(t + τrbs)+PA(t + τ2A)

GeneB0(t)
ε ·k1−−→ GeneB0(t + τps)+MB(t + τ1B) GeneB0 +PA

k3−→ GeneB1 PB
k5−→ /0

GeneB1(t)
k1−→ GeneB1(t + τps)+MB(t + τ1) GeneB1

k4−→ GeneB0 +PA MB
k6−→ /0

MB(t)
k2−→ MB(t + τrbs)+PB(t + τ2B)

PA+PB
k7−→ PC

PC
k8−→ PB

Table 2.3 The complete set of reactions behind the delayed Barkai-Leibler relaxation os-
cillator model. The delaysτ1A andτ1B are explicitly different, to emphasize the subsequent
independent investigation. The subscript notation for thegenes refers to how many proteins
are bound to the gene as transcription factors.GeneX0 is an actively transcribing gene, while
GeneX1 is repressed. The translation delayτ2X assumes generic 1000 base pair genes. For
reactions rate parameters see [Vilaret al., 2002].

switch repressilator model, the relaxation oscillator uses activation promoter sites,
and combinatorial operators were not used when modeling this network.

The relaxation oscillator does not possess the simple symmetry of the repressila-
tor, and thus the delay-dependance is much more interesting. In fact, when delaying
the relaxation oscillator, the stability of the limit cycleattractor is either increased
or decreased, depending on which pathway is delayed. This fact begins to hint at the
complexity that emerges when investigating large regulatory networks, and further
underscores the need for a computationally efficient methodof analysis, whereby
individual pathways can be easily studied in isolation.

Figure 2.13 shows a histogram of the relaxation oscillator state-space projected

Figure 2.13 Histograms across the projected phase space at (left) the nominal delay con-
figuration, (center) when gene B is delayed, and (right) whengene A is delayed, along with
the autocorrelation function ofPB(t) at that parameterization. The histogram colormap is log-
arithmic in scale. While the phase space histogram shows thedelay-dependancy clearly, the
autocorrelation functions provide no insight at all.
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2.6 Analysis: Relaxation oscillator

into the(PB×PC) plane. Introducing a delay onto the gene A mRNA transcript de-
creases the stability of the oscillator, while a delay on gene B increases the stabil-
ity. This is consistent with the separation of timescales dynamics at work in this
hysteresis-based oscillator, whereby delaying gene B retards the oscillators slow re-
pression pathway, keeping the fast auto-activation pathway untouched.

Unfortunately, the autocorrelation peaks that summarizedthe stability improve-
ment of the repressilator so well say little or nothing here.The reason for this is not
clear, but if we permit speculation, it seems to relate to thedirection of the noise with
respect to the limit cycle. For the repressilator, the noisereduction brought by delays
seems to primarily suppress disturbancesalongthe limit cycle, leading to a reduction
of phase noise. Meanwhile, the delay-induced noise reduction for the relaxation os-
cillator seems to be primarily perpendicular to the trajectory of the limit cycle, and
delays do little to effect the phase noise of the stochastic oscillations. We empha-
size that this explanation is merely speculation, and no clear answer is immediately
apparent.

Analyzing the stability of the relaxation oscillator limitcycle reveals that even
the simplest networks can have complex delay-dependancies. Our qualitative analy-
sis nonetheless revealed the possibility of engineering stability by delaying the sec-
ondary helper gene of the network (Gene B).

As we have iterated many times by this point, performing anything more than a
crude local analysis of a discrete, stochastic model of genetic regulatory network is
prohibitively slow. For this reason, we now (finally) turn toDDE analysis of simpler,
deterministic models, where we develop more precise measures of delay-dependent
stability using a wide range of results from numerical analysis and the theory of
dynamical systems.
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3. DDE Stability Analysis

In this chapter, we outline methods from the stability analysis of delay-differential
equations (DDEs), and demonstrate their applicability to our bioengineering inquiry.
The analysis presented here is well grounded in the theory ofdynamical systems,
and if offers a method for quantifying the delay-dependanceof the attractor stability
qualitatively ‘observed’ during the previous stochastic analysis.

First, we study the stability of fixed points of systems of DDEs, applying linear
stability analysis and principles from numerical analysisand control theory. Next, we
study the more complicated stability of limit cycles of systems of DDEs, where our
approach is based on Floquet theory and methods from numerical analysis for bound-
ary value problems (BVPs). In each section we first review thetheoretical founda-
tions of the analysis before presenting its application to bioengineering. This stability
analysis of DDE models provides a succinct summary of how delays can be used to
engineer stable genetic oscillators.

3.1 Delay-differential equations

Often genetic regulatory networks are modeled as a system ofdifferential equa-
tions, where species assume positive, continuous concentrations, and interact instan-
taneously and deterministically in continuous time, in a time invariant fashion. Math-
ematically speaking, such models simply describe the reaction network as an initial
value problem (IVP):

dx(t)
dt

= f (x(t)) (3.1)

x(0) = x0 ∈ R
n, (3.2)

wherex is the vector ofn species concentrations, andx0 is the initial concentrations.
In reality the concentrations are positive, andx ∈ R

n
+, but we will considerx ∈ R

n,
and consistent models will naturally confine the system to the positive subspace.

As should be clear to the reader at this point, in reality, these reaction networks
very often contain delays. Such systems are more accuratelymodeled through a de-
pendance upon a series of historical values, forming the following DDE:

dx(t)
dt

= f (x(t),x(t − τ1), . . . ,x(t − τm)), (3.3)

xt(s) = φ(s) ∈C0([−τ ,0],Rn), , (3.4)

wherext(s) := x(t + s), s∈ [−τ ,0] will be explained below. This is a special case
of what is more generally known as a functional differentialequation (FDE), where
the right hand side can potentially involve functionals (e.g. integrals) operating on
historic values over some distributed interval of time (as opposed to discrete sample
times). This more general case need not be considered here asit does not occur in our
regulatory network systems. See [Hale and Lunel, 1993] for details.

There are many fundamental differences between ODEs and DDEs, and in spite
of their superficial similarity, the introduction of even a single delay introduces sev-
eral complications. The most significant difference, with widespread consequences,
is that the state of the system at timet is no longer completely defined by the state
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of the system at that time (x(t) ∈ R
n), but rather by the historical values of the state

on the entire interval[t − τ , t], here denotedxt(s). This continuous vector-valuedhis-
tory functiondefined over the entire interval is in fact the infinite-dimensional state
for the system. This in turn complicates the initial conditions, which then must be
defined as a history function. For an excellent overview directed towards pointing out
computational challenges, see [Bellen and Zennaro, 2003].

To speak in less general terms, in physical situations the function f is widely
separable, owing to the fact that direct interactions between different historical states
constitute a physical impossibility. This effectively restricts our study to formulations
of the following type:

dx(t)
dt

= f0(x(t))+
m

∑
i=1

fi(x(t − τi)), (3.5)

x(t) = φ(t), t ∈ [−τ ,0], (3.6)

where f0 might model species decay, andfi might model different transcriptional
regulation pathways, while all map fromRn → R

n, as with f . This separated formu-
lation does not in itself admit any novel methods of analysis, but can be useful for
developing intuition.

3.2 Stability of fixed points

Here we present three methods for analyzing the stability offixed points in delay-
differential equations. First, we present a restricted explicit approach with limited
(but nonetheless some) applicability. Second, we present ageneral numerical method
based on well understood approximations. These two methodsare largely borrowed
from [Jarlebring, 2008], a recent PhD thesis that surveys the subject of numerical
methods for linear DDE stability well. The methods are then applied to the Gardner
toggle switch model to study the delay-dependent stabilityof the DDE model. Model
reduction techniques for studying fixed points of DDE modelsof genetic regulatory
networks as presented in [Chen and Aihara, 2002a] are omitted here due to their
severely restricted applicability.

Linearization

Fixed points in delayed systems can be derived in the same manner as for ordinary
differential equations. Takingdx(t)

dt = 0 andx(t) = x(t − τi) = x∗, we solve for the
zeros of the following equation:

0 = f (x∗,x∗, . . . ,x∗). (3.7)

Because we are generally studying multi-stable systems, there will typically be sev-
eral fixed points. It can be noted that the Gardner toggle switch exhibits symmetries
that result in two stable fixed points (and one unstable fixed point) with identical
stability and delay-sensitivity. But in general, the procedure that follows must be re-
peated at each fixed point that one wishes to study.

In order to study stability, we then linearize (3.5) over thecurrent and delayed
states, at the chosen fixed point, to obtain:

dx(t)
dt

= A0x(t)+
m

∑
i=1

Aix(t − τi), (3.8)

Ai =
∂ fi(x)

∂x

∣
∣
∣
∣
x=x∗

. (3.9)
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Here fi and x are all vector valued, and so the matricesAi constitute the typical
Jacobian matrices.

Explicit approach

In this section, we offer an explicit approach for systems oflinear DDEs as presented
in (3.8), but the applicability is limited to systems with one delay. These types of
systems are in fact rather common in control and other disciples, and for a limited
subset of these problems, explicit expressions for the eigenvalues have been derived.
The central tool for these results is the Lambert W function,the inverse function of
f (W) = WeW, which is in fact of curiously old origins [Lambert, 1758; Euler, 1779].
To the best of the our knowledge, the relation to delay differential equations was first
made in [Wright, 1948], and it is also discussed in [Hale and Lunel, 1993]. The review
by [Corlesset al., 1996] can be seen as ushering in its modern era of application.

The Lambert W function arises when considering solutions tothe characteristic
equation of linear DDE problems as in (3.8), with one delayeddependancy:

dx(t)
dt

= A0x(t)+A1x(t − τ), (3.10)

x(t) = φ(t), t ∈ [−τ ,0]. (3.11)

The characteristic equation can be derived through an ansatz of the solution type
x(t) = x0eAt, from which we obtain the transcendental characteristic equation:

0 = det(−sI+A0+A1e
−sτ) (3.12)

The roots of this function are infinite, owing to its transcendental nature, and in agree-
ment the infinite dimensional structure of DDEs. The roots can be expressed using
the Lambert W function, according to the following theorem [Jarlebring and Damm,
2007]:

THEOREM 3.2.1
If A0 andA1 are simultaneously triangularizable (with (A0, A1) commuting being a
sufficient special case), then

σ(A ) =
⋃

k

σ
(

1
τ

Wk(A1τe−A0τ)+A0

)

(3.13)

HereWk denotes thekth branch of theW function. In practice, the branches of theWk

function are evaluated efficiently to machine accuracy using Halley’s method [Hilde-
brand, 1987], as discussed in [Corlesset al., 1996]. The requirement thatA0 andA1

be simultaneously triangularizable is rather constraining, but fortunately some sys-
tems do exhibit this property, by virtue of commuting. In ourbiological context, if
the instantaneous dependanceA0 only contains decay terms with a symmetric decay
rate across chemical species (A0 = β In), then (A0, A1) certainly commute.

It is worth noting that in the case whereA0 andA1 are scalar, we obtain a scalar
delay-differential equation, and the result presented in Theorem 3.2.1 is well known.
The correct generalization to systems of equations came only recently, with the work
of Jarlebring.

Some properties of theW function operating on matrices will now be briefly
discussed. We note that the LambertW function operates block-wise on matrices in
Jordan normal form, where different branches can be accessed by different blocks:

Wk(J) = diag(Wk1(Jn1(λ1)), . . . ,Wkm(Jnm(λm))). (3.14)
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Chapter 3. DDE Stability Analysis

By also noting the permissible transformationWk(A) = SWk(J)S−1, we know enough
to analyze the spectrum of basic systems where all eigenvalues are simple. For sys-
tems possessing Jordan blocks of dimension greater than one, additional techniques
presented in [Jarlebring and Damm, 2007] are needed.

Numerical approach

The numerical approach is not limited to only one delay term,and offers a general
approach that can be validated against the explicit approach for single-delay, simulta-
neously triangularizable problems. For pedagogical simplicity, we will however limit
our presentation to systems with a single delay. The approach consists of several
steps, where the linearized system (3.10) is first translated to a partial differential
equation (PDE) formulation, exactly describing the DDE, and then the spectrum of
the PDE operator are analyzed through Chebyshev spectral semi-discretization.

Linear delay differential equations can be though of as abstract Cauchy trans-
port problems with non-local boundary conditions [Hale andLunel, 1993; Jarlebring,
2008]. By introducing a dummy variableθ to describe amemory dimensionin a
clever way, the system in (3.10) can be described byu(t,θ) = x(t + θ) solving:

∂u
∂ t

=
∂u
∂θ

, (3.15)

∂u(t,0)

∂θ
= A0u(t,0)+A1u(t,−τ), (3.16)

u(0,θ) = φ(θ), θ ∈ [−τ ,0], (3.17)

where (3.16) is the boundary value mimicking (3.10), and (3.17) is the initial condi-
tion. Note that this formulation is consistent even for vector valued problems (n> 1).
This linear PDE formulation is also infinite-dimensional, and it is rigorously identical
to the linearized problem studied in (3.10). This means thatwe can study the stability
of (3.15), and it will correspond to the stability properties of the DDE, linearized at
the fixed point of interest.

By introducingA as the differentiation operator inθ , (3.15) becomes

∂
∂ t

u(t,θ) = A u(t,θ), (3.18)

and we can now formulate a tractable approximation of the time dynamics by dis-
cretizing the memory dimensionθ , with a gridΘ = {θ0, . . . ,θN}, and then approxi-
mate the differentiation operatorA with the differentiation matrixAN, which will be
especially constructed for the task. The history function can be sampled, and the solu-
tion elementsui

N(t) ≈ u(t,θi) = x(t + θi) (still vector valued) represents the solution
at the(N+1) gridpoints inΘ:

d
dt

uN(t) = ANuN(t), (3.19)

uN(0) = [φ(θ0)
T , . . . ,φ(θN)T ]T (3.20)

This is a finite-dimensional linear system of ordinary differential equations, approx-
imating the infinite-dimensional PDE, brought about by discretization inθ , and we
can now readily access the approximate spectral propertiesof the operatorA by an-
alyzing AN, and thereby grasp the stability of the system evolving in time, which is
precisely our interest.
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3.2 Stability of fixed points

The discretization of the operator is a somewhat intricate matter. A crude ap-
proach would involve selecting a uniform gridΘ, and approximate the differenti-
ation using a (forward Euler) finite difference [Bellen and Maset, 2000]. This re-
sults in the classic differentiation matrix, with the boundary condition d

dt u
N
N(t) =

A0u0
N(t)+A1uN

N(t) absorbed into the matrix:

AN =

[

DN ⊗ In
A1 0· · ·0 A0

]

∈ R
n(N+1)×n(N+1) (3.21)

DN =
1
h







−1 1
... .. .

−1 1






∈ R

N×(N+1) (3.22)

whereh = τ/N is the uniform grid spacing, and the Kronecker product operates on
an identity matrix of the same dimension as the original system (n), keeping our
derivation relevant for higher dimensional systems.

This crude finite difference approach is in practice very crude, and a much better
approach involves discretizing the memory dimensionθ with non-uniform Cheby-
shev nodes, and using a Chebyshev differentiation matrix inplace of Euler forward
differentiation [Bredaet al., 2005]. The theory of spectral differentiation will not be
reviewed here, see [Trefethen, 2000] for details. In practice, we select a non-uniform
discretization gridΘ = {cos( jπ/N)}N

j=0 ∈ [−1,1] (which is rescaled below), and then

constructing the nominal Chebyshev differentiation matrix DN ∈ R
(N+1)×(N+1) as:

(DN)00 = 2N2+1
6 ,

(DN)NN = −2N2+1
6 ,

(DN)ii = −θi
2(1−θ 2

i )
, j = 1, . . . ,N−1,

(DN)i j = ci
cj

(−1)i+ j

(θi−θ j )
, i, j = 0, . . . ,N−1, i 6= j

(3.23)

where

ci =

{
2, i = 1,N

1, otherwise.
(3.24)

This nominal Chebyshev differentiation matrix is then transformed to the relevant
interval asD̂N = − 2

τ DN, which places the interval on[−τ/2,τ/2], but since we are
ultimately interested only in the stability properties of the operator here, and not in
simulation, we do not need to shift the interval. The multiplication by−1 assure
agreement with the sequential order of the solution vector,whereu0

N(t) = u(t,θ0) =
u(t,−τ) = x(t − τ) anduN

N(t) = x(t). The boundary condition is again imposed by
replacing the last row of the matrix by the boundary condition. We thus achieve our
operator approximationAN (in matlab syntax, enumerating from 1), as:

AN =

[

− 2
τ D̂N(1 : N,1 : N+1)⊗ In

A1 0· · ·0 A0

]

∈ R
n(N+1)×n(N+1) (3.25)
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Chapter 3. DDE Stability Analysis

We can now study the eigenvalues of (3.25) as an approximation of the differential
operatorA with so-called “spectral accuracy”. Loosely speaking, spectral accuracy
implies that if the solutionu has p− 1 continuous derivatives inL2(R) for some
p≥ 1, then the convergence isO(N−(p+1)), and ifu is analytic then the convergence
is O(cN), wherec ∈ (0,1). Again, see [Trefethen, 2000] and the references therein
for details. This rapid convergence allows us to analyze thestability of even large
networks in a computationally tractable manner. Thus, the previously derived explicit
spectrum of a limited class of linear systems of DDEs is useful as a benchmark for the
numerical method by comparison, but the numerical method isbroadly preferable.

3.3 Analysis: Toggle switch

We will now apply both the explicit and numerical approachesto study the stability
of the fixed points of the Gardner toggle switch [Gardneret al., 2000] as the delay
parameters are varied. The behavior of the toggle switch canbe understood to fol-
low the following reduced (in the sense that we do not model mRNA and protein
separately) model, with decay, transcriptional regulation, and promoter leakiness:

dx1(t)
dt

= −βx1(t)+
α1

1+x2(t − τA)2 + α0 (3.26)

dx2(t)
dt

= −βx2(t)+
α1

1+x1(t − τB)2 + α0, (3.27)

whereβ = log(2)/600,α1 = 10, α0 = 0.01. Here we aggregate the many transcrip-
tional and translational delays from the stochastic modelsinto single delay terms.
The system has two stable fixed points (and one unstable) in the positive quadrant,
and we will focus out attention on the stable fixed points. Dueto the symmetry of
the model, we need only study the stability of one of the two, and the behavior of the
other equilibrium point will be transposed but identical. We solve for the fixed points
x∗ using a symbolic solver and obtain the linearized system:

d
dt

[

x1(t)

x2(t)

]

=

[

−β 0

0 −β

]

︸ ︷︷ ︸

A0

[

x1(t)

x2(t)

]

+

[

0 αh

αl 0

]

︸ ︷︷ ︸

A1

[

x1(t − τ)

x2(t − τ)

]

. (3.28)

Here the valuesαh and αl come from linearization at the fixed point, and are ex-
changed to study the other equilibrium. For the first equilibrium, wherex1 is “high”
andx2 is “low”, αh = −0.1225 andαl = −5.6783·10−8.

For this system, the matrices(A0,A1) clearly commute, and so the explicit result
presented in Theorem 3.2.1 becomes applicable. Below in Figure 3.1 we present a
root locus plot of the first six eigenvalues of the system, found using the branches
W0, W−1, andW1 of theW-function, studied as we vary the delay parameterτ . The
spectrum from Theorem 3.2.1 reduces quite nicely for this system using the properties
of theW-function presented earlier, and with (λ1, λ2) as the eigenvalues ofA1, we
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3.3 Analysis: Toggle switch

obtain the following union of sets of two eigenvalues per branch of theW-function:

σ(A ) =
⋃

k

σ
(

1
τ

Wk(A1τe−A0τ)+A0

)

(3.29)

=
⋃

k

σ
(

1
τ

Wk(A1τeβτ I )−β I

)

(3.30)

=
⋃

k

{1
τ

Wk(λ1τeβτ)−β ,
1
τ

Wk(λ2τeβτ)−β
}
. (3.31)

It can be noted from the plot that the eigenvalues continuously approach the eigen-
values of the non-delayed system asτ → 0. This can also be deduced by evaluating
the limit of (3.31).

We also present the same six eigenvalues calculated using the numerical method
based on Chebyshev semidiscretization of the reformulatedPDE, where we com-
puter the spectrum ofAN from (3.25). Our discretization uses a mereN = 10 nodes,
and the resulting eigenvalues are for our purposes essentially identical to the explicit
eigenvalues.

From this root locus plot we can deduce that the principle eigenvalue, under-
stood to be the eigenvalue with the greatest real portion, isinitially robust to delay,
though it eventually moves slowly towards the imaginary axis (the stability bound-
ary) as the delayτ is increased beyondτ = 500 seconds. In fact, all of the eigenvalues
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Figure 3.1 A root locus plot showing the movement of the six principle eigenvalues as the
delay parameterτ is varied (above), and the real portion of the same eigenvalues plotted versus
the delay parameter, in seconds (below).

31



Chapter 3. DDE Stability Analysis

(even the infinitely many eigenvalues not shown) converge upon the origin asτ → ∞.
This agrees with the delay-indifference observed when studying the stochastic toggle
switch model.

In summary, this section provides a method for analyzing thedelay-dependence
of the stability of fixed points, and we find that for our toggleswitch network, the
stability of the operating points are generally indifferent to all but the largest delays,
explaining the behavior of the stochastic model seen earlier. This destabilizing effect
of delay can not be considered surprising nor particularly exciting, but as we shift our
focus to limit cycles and oscillatory genetic networks, once again more complicated
consequences can be suspected.

3.4 Stability of limit cycles

In this section we present the primary result of this thesis,a method for analyzing
the delay-dependent stability of oscillators in genetic regulatory networks using tools
from the theory of dynamical systems. These oscillatory networks can be modeled as
nonlinear systems of delay-differential equations exhibiting limit cycles. The method
of analysis first finds periodic solutions to nonlinear DDEs using a cleverly modified
Newton’s method-type solver, and then constructs a linear time integration operator,
linearized at the periodic solution. The stability properties of the operator reveals
the stability properties of the genetic regulatory networkunderlying the nonlinear
system of DDEs being studied, and a measure of the oscillators rigidity can then be
presented. We apply our analysis to the Elowitz ring oscillator (repressilator) and the
Barkai-Leibler relaxation oscillator, showing how changes in delay topology affect
the stability of the oscillations.

In previous work regarding the stability analysis of limit cycles to delay differen-
tial models of genetic regulatory networks, mathematical assumptions necessary to
obtain analytic results have greatly restricted the class of relevant models. In [Chen
and Aihara, 2002b], less quantitative conclusions are drawn regarding the stability
of limit cycles based on the measure of the parameter region that leads to oscilla-
tory behavior. This result uses singular perturbation theory and so it furthermore ap-
plies only to relaxation/hysteresis oscillators, exploiting the separation of timescales
found there. In our work, we develop a more general quantitative result using well-
understood numerical methods to analyze general networks.

Linearizing at a periodic solution

Themonodromy operatoris a linear time integration operator mapping solutions to
the variational equation from one period to the next, linearized around the periodic
solution. The theory which underlies this periodic linearization is generally referred
to as Floquet theory, see [Stokes, 1977; Hale and Lunel, 1993] for details. For a
system withmdelays, the variational equation is given by,

d
dt

y = TA∗
0(t)y(t)+T

m

∑
i=1

A∗
i (t)y(t −

τi

T
) (3.32)

whereA∗
i (t) = ∂ f

∂xi

∣
∣
∣
u∗

are periodic linearizations off at the periodic solutionu∗(t).

Notice that for constant solutions (fixed points), this is the same as the linearization
in (3.8). Floquet theory tells us that the solution to this system of equations has the
separable form

y(t) = P(t)eBt, (3.33)
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3.4 Stability of limit cycles

whereP(t) is T-periodic,P(t) = P(t + T), ∀t. Then the monodromy operatorM :
C0
(
[− τ

T ,0],Rn
)
7→ C0

(
[− τ

T ,0],Rn
)

corresponds to forward integration over the pe-
riod T, and the spectrum is given by

σ(M ) = σ(eBT), (3.34)

see [Hale and Lunel, 1993] for details.
The monodromy operator always possesses atrivial eigenvalue (in this context

also called thecharacteristic (Floquet) multiplier) of µ1 = 1, corresponding to a
perturbation along the periodic solution. By studying the spectrum of characteris-
tic multipliers, we can determine and quantify the stability of the periodic solution.
For stable limit cycles,

|µi | < 1, ∀i > 1,

and the smaller the characteristic multipliersµi , the faster any perturbations away
from the periodic solution along the corresponding eigenfunction ψi die out. In this
format, we are studying a simple problem of linear stabilitytheory for a discrete map,
and using this we can deduce the delay-dependent stability by studying the system
under a range of delay parameterizations.

We seek periodic solutionsx(t) to our DDE, where the history functions at time
t = 0 andt = T are identical. At this point it becomes appropriate to rescale the time
dimension, such thatt := t/T. With this, we seek a periodic solution wherex0 = x1,
by notation analogous to that which was introduced earlier,xt ∈ C0([t − τ

T , t],Rn),
wherext(s) := x(t + s

T ), s∈ [−τ ,0]. We will only derive our results for systems
with a single delay, but the generalization to systems with multiple (discrete) delays-
dependencies is straight-forward. For notational simplicity, we also assume thatτ <
T, a reasonable constraint that is however not necessary. In rescaled time we obtain a
‘functional’ boundary value problem ont ∈ [0,1], as:

dx(t)
dt

= T f(x(t),x(t −
τ
T

)), (3.35)

x0 = x1, (3.36)

p(x(t),T) = 0. (3.37)

HereT is treated as an unknown parameter (with nonlinear dependancies) that must
be solved for alongside our solution. In (3.37) above we’ve been forced to add aphase
constraint, introduced to arbitrarily fix a starting point in the period. The general as-
pects of this approach applied to finding limit cycles in ODEswith unknown periods
is well outlined in [Parker and Chua, 1989], but as we will nowsee, DDEs present
some complications, resolved primarily in [Engelborghset al., 2000].

Because the dependance from one point in the solution to another is non-trivial
(when the period of the oscillation is not an even multiple ofthe delay time(s)), no
simple discretization exists, and constructing a completeset of points with a closed
dependancy is prohibitively difficult or impossible. Thus,instead of solving for the
point values of a frequently sampled solution, instead the solution is parameterized
as an interpolated solution across a mesh of points. In the work of [Engelborghs
et al., 2000], which is the basis of the implementation in the DDE-BIFTOOL toolbox
[Engelborghset al., 2002], the set of piecewise polynomials (splines) are usedto
parameterize the solution. in order to fully document the methodology we use in this
work, we will now outline the approach in sufficient detail.

Let Π be a collection of meshpoints 0= t0 < t1 < .. . < tL = 1 that partition the
interval [0,1], typically a uniform grid. Sethi := ti+1 − ti for i = 0, . . . ,L− 1. Let
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πm denote the set of all (vector-valued) polynomials of degreenot exceedingm. We
will approximate the solution to (3.35) by an element from the following space of
piecewise polynomials:

Sm(Π) := {u ∈C([0,T],Rn) : u|[ti ,ti+1] ∈ πm, i = 0, . . . ,L−1}. (3.38)

In each interval[ti, ti+1] we then have a vector-valued polynomial of degreem, repre-
sented at therepresentation pointswithin the interval:

ti+ j
m

:= ti +
j

m
hi , l = 1, . . . ,m−1, (3.39)

These points are a further refined uniform grid, and it is on this grid of points that we
will obtain our solution. We can then formulate the interpolated solutionu(t) with
unknownsu(ti+ j

m
) as:

u(t) :=
m

∑
j=0

u(ti+ j
m
)Pi j (t), t ∈ [ti, ti+1] (3.40)

wherePi j (t) are theLagrange polynomials,

Pi j (t) :=
m

∏
r=0,r 6= j

t − ti+ r
m

ti+ j
m
− ti+ r

m

, j = 0, . . . ,m. (3.41)

Thus we have a degree-m polynomial on each interval, acrossL intervals, inn di-
mensions, and so dim(Sm(Π)) = n× (m×L +1) (note that interval endpoints of the
piecewise polynomials are shared), andu ∈ Sm(Π) is continuous but not necessar-
ily continuously differentiable (at the mesh points). Whennot continuous, either a
left-hand or right-hand derivative can be arbitrarily chosen, and the effect upon the
solution is insignificant.

The solution parameterized in (3.40) can then be inserted into (3.35), and the
Lagrange polynomials differentiated and inserted on the left hand side to obtain the
collocation equationsfor each interval, which can be solved to evaluate the solution
to (3.35) correctly at allcollocation points cper interval:

du(c)
dt

= T f(u(c),u(c−
τ
T

)), whenc−
τ
T

≥ 0 (3.42)

du(c)
dt

= T f(u(c),u(c−
τ
T

+1)), whenc−
τ
T

< 0,

u0 = uL, (3.43)

p(u,T) = 0, (3.44)

The collocation pointsc in each interval[ti , ti+1] can be chosen either uniformly, thus
replicating therepresentation pointsin (3.39), or as the roots of Gauss-Legendre
polynomials. Where a uniform (or any other general mesh) would result inO(hm)
convergence, Gauss-Legendre collocation points result inO(hm+1) convergence, and
are implemented in the DDE BIFTOOL software package [Engelborghset al., 2000].
The collocation pointsci,l are then:

ci,l := ti +clhi , l = 1, . . . ,m, (3.45)

0≤ c1 < c2 < · · · < cm ≤ 1. (3.46)
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wherecl are the zeros to the Gauss-Legendre polynomials, on the unitinterval. We
thus obtain one instance of (3.42) for eachi = 0, . . . ,L−1, l = 1, . . . ,m. If we write

c̃i,l =

{

ci,l −
τ
T , whenc− τ

T ≥ 0,

ci,l −
τ
T +1 , whenc− τ

T < 0,
(3.47)

and letk be the integer such thattk ≤ c̃i,l < tk+1, then the collocation equations (3.42)
take the form:

m

∑
j=0

ui+ j
m
P′

i j (ci,l ) = T f

(
m

∑
j=0

ui+ j
m
Pi j (ci,l ),

m

∑
j=0

uk+ j
m
Pk j(c̃i,l )

)

, ∀i, l . (3.48)

This, for all intents and purposes, is merely a system of nonlinear algebraic equations,
with unknownsui+ j

m
:= u(ti+ j

m
) and T, and we can now apply Newton’s method

to solve for these unknowns. We note that this problem provides n× (m× L + 1)
equations forn× (m× L + 1)+ 1 unknowns, and the phase constraint provides the
last equation.

The phase constraint

A phase condition is required in order to remove translational invariancy and fix
a starting point in the period, for otherwise an unconstrained set of phase shifted
periodic solutions would all satisfy our problem. Typically the classical integral phase
condition is applied,

∫ 1

0
u̇(0)(s)

(

u(0)(s)−u(ν)(s)
)

ds= 0, (3.49)

whereu(0)(s) is the initial solution at the start of the Newton iteration,andu(ν)(s) is
the current estimate. Notice that this phase constraint respects the phase of the initial
estimate.

Constructing the Newton solver

To solve (3.48) for the periodic solution, we reformulate the equation for each collo-
cation pointci,l as:

H i,l (u,T) :=
m

∑
j=0

ui+ j
m
P′

i j (ci,l )−T f

(
m

∑
j=0

ui+ j
m
Pi j (ci,l ),

m

∑
j=0

uk+ j
m
Pk j(c̃i,l )

)

= 0.

(3.50)
Note that dim(H i,l ) = dim(u) = n, the size of the system of DDEs. Performing a
Taylor expansion for each(i, l) around an estimateu(ν), we construct our Newton
solver by identifying the linear error estimates(∆u(ν),∆T(ν)), which can then be
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solved for in a linear setting, and an update scheme applied:

0 = H i,l (u,T) (3.51)

0 ≈ H i,l (u(ν),T(ν))+ (3.52)
[

Du(ν)H i,l (u(ν),T(ν))∆u(ν)

]

+

[

DT(ν)H i,l (u(ν),T(ν))∆T(ν)

]

−H i,l (u(ν),T(ν)) =

[
m

∑
j=0

P′
i j (ci,l )∆u(ν)

i+ j
m

+ (3.53)

T(ν)A(ν)
0

m

∑
j=0

Pi j (ci,l )∆u(ν)

i+ j
m

+T(ν)A(ν)
1

m

∑
j=0

P′
k j(c̃i,l )∆u(ν)

k+ j
m

]

+

[

f
( m

∑
j=0

u(ν)

i+ j
m

Pi, j(ci,l ),
m

∑
j=0

u(ν)

k+ j
m

Pk, j(c̃i,l )
)

∆T(ν)−

T(ν)A(ν)
1

( m

∑
j=0

u(ν)

k+ j
m

P′
k, j(c̃i,l )

) τ
(T(ν))2

∆T(ν)

]

This is then a system of linear equations over the error estimates(∆u,∆T), with A(ν)
0

andA(ν)
1 being theµ-iteration Jacobians tof , evaluated at the collocation pointci,l :

A(ν)
0 :=

∂ f
∂ξ

(ξ ,η) A(ν)
1 :=

∂ f
∂η

(ξ ,η) (3.54)

Now the typical Newton method for systems of equations can beapplied. To illus-
trate, we present the structure of a fictitious system of equations withm= 2 below:

[

A(ν) b(ν)

(c(ν))T d(ν)

]

















∆u0

∆u0+ 1
2

∆u1

∆u1+ 1
2

∆u2
...

∆T

















︸ ︷︷ ︸

δ (ν)

(ν)

= −

















H0,0(u(ν),T(ν))

H0,1(u(ν),T(ν))

H1,0(u(ν),T(ν))

H1,1(u(ν),T(ν))

H2,0(u(ν),T(ν))
...

0

















, (3.55)

whereA is a sparse matrix with band-like structures (see [Engelborghset al., 2000]),
b is a vector incorporating theT-dependance, andc andd are derived by linearizing
the phase constraint (3.49), a process that is not shown here.

This system can then be solved forδ (ν) (via e.g. LU decomposition to avoid
matrix inversion), and the solution can be updated until convergence as:

u(ν+1) = u(ν) + ∆u(ν) (3.56)

T(ν+1) = T(ν) + ∆T(ν). (3.57)

Obtaining an initial estimate

We now wish to apply this method at many different delay parameter values, to find
the limit cycle of the system at those parameter values, witha stability analysis as our
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goal. But in order to run our Newton iterator, a descent initial estimate is required for
convergence. This is an infamous property of the Newton method, and it is overcome
by obtaining an initial estimate of the limit cycle from a numerical simulation. By
applying a numerical solver (such asdde23 or ddesd in matlab) roughly until con-
vergence (“for a long while”), and extracting one period of the solution translated to
a proper mesh gridΠ and set of representation pointsti+ j

m
(see (3.38) and (3.39)),

we are able to supply a sufficiently close initial estimate, that in practice allows our
Newton solver to converge. If convergence is not achieved, stricter requirements can
be made for the DDE numerical solver.

Once we have obtained a periodic solution at a nominal set of delay parameters,
we have successfully entered the ‘solution space’, and thisnominal solution can be
used as an initial estimate to re-run the Newton solver at a nearby set of parameters,
and here convergence is typically excellent. In this fashion, one can traverse the pa-
rameter space to obtain periodic solutions to nearby parameter values rapidly, without
having to re-run a DDE numerical solver.

The time integration operator

All of the work so far has been for the purpose offinding the limit cycle. With the
periodic solution in hand,u∗(t) with periodT∗, our attention turns to studying the
stability properties of the time integration operator applied to the system over a period
T, also called themonodromy operator.

Themonodromy matrix Mapproximating this operator is the matrix correspond-
ing to a numerical integration of (3.32) spanning[− τ

T ,1], and extracting the mapping
of the elements in[− τ

T ,0] to [1− τ
T ,1]. This matrix can be derived largely from the

linear system in (3.55), where theA-matrix is essentially this discretized, linearized
operator. An exact mathematical formulation of the monodromy matrix is weighed
down in notation, and therefore a detailed formulation is omitted. For an implemen-
tation of the methodology, we rely on DDE BIFTOOL.

The eigenvalues of the monodromy matrix approximate the eigenvalues of the
operator, providing a measure of the stability of the periodic solution. Thus, we can
derive the dominant non-trivial multiplierµ2 (recall thatµ1 = 1), and study its de-
pendance on the delay parameters of the delay-differentialequation.

Sensitivity analysis

In addition to studying the delay-dependance of the dominant non-trivial multiplier,
to succinctly study the delay-dependance, we will also examine partial derivative
sensitivities. By calculating the sensitivity of the dominant non-trivial multiplier with
respect to delayτi as a central difference after a logarithmic transformation,

Si := −
d

dτi

(

ln |µ2(τ)|
)

(3.58)

Si ≈ −

(

ln |µ2(τ + εi)|− ln |µ2(τ − εi)|

2εi

)

(3.59)

Si ≈ −
1

2εi
ln

(

|µ2(τ + εi)|

|µ2(τ − εi)|

)

, (3.60)

we obtain a mapping where a positive sensitivity corresponds to an increase in sta-
bility, and a negative sensitivity corresponds to a decrease. Hereτ is the vector of
delays, andεi is a perturbation to delayi.
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3.5 Analysis: Repressilator

Having now outlined the mathematical methodology, we can turn our attention to
the bioengineering inquiry that motivates our efforts. Howmight delays improve the
stability of genetic regulatory oscillators? In terms of our newly derived methodology,
how do the characteristic multipliers of the limit cycle depend upon delay?

We once again begin our oscillator analysis with the Elowitzrepressilator, which
was introduced in the previous chapter. The repressilator is a ring oscillator consist-
ing of three proteins repressing each other, and is commonlyformulated in a six-
dimensional ODE, with proteins and mRNA:

dmA

dt
= α0 +

α
1+ pC(t)2 −mA (3.61)

dmB

dt
= α0 +

α
1+ pA(t)2 −mB

dmC

dt
= α0 +

α
1+ pB(t)2 −mC

dpA

dt
= −β (pA(t)−mA(t))

dpB

dt
= −β (pB(t)−mB(t))

dpC

dt
= −β (pC(t)−mC(t)).

The reduced ODE formulation of the repressilator is a case-in-point of why non-
delayed models do not accurately describe the system dynamics. The reduced ODE
model (wheredmi/dt ≈ 0, and parametersα ,α0,β are appropriately converted),

dpA

dt
= −β pA(t)+ α0 +

α
1+ pC(t)2 (3.62)

dpB

dt
= −β pB(t)+ α0 +

α
1+ pA(t)2

dpC

dt
= −β pC(t)+ α0 +

α
1+ pB(t)2 ,

in fact leads to a stable equilibrium fixed point, and no oscillations at all. For param-
eter values, see the ODE model in [Elowitz and Leibler, 2000]. The more detailed
six-dimensional model is used by the authors to maintain a delay in the interactions
between proteins, via the intermediate mRNAs. This furthermotivates the delay dif-
ferential formulation, which is diagramed below in Figure 3.2:

dpA

dt
= −β pA(t)+ α0 +

α
1+ pC(t − τA)2 (3.63)

dpB

dt
= −β pB(t)+ α0 +

α
1+ pA(t − τB)2

dpC

dt
= −β pC(t)+ α0 +

α
1+ pB(t − τC)2 .

While the non-delayed system is dominated by a stable fixed point, whenτA,τB,τC ≈
21 seconds, a Hopf bifurcation occurs, and for delays longerthan 21 seconds we ob-
tain a stable limit cycle surrounding an unstable fixed point. This alone is a notewor-
thy realization, seeing as the classic repressilator operates only marginally beyond
the bifurcation point, at about 27 seconds of delay.
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Figure 3.2 A schematic of the Elowitz ring oscillator delay model, and the nominal limit
cycle. Three promoter sites produce three different proteins, and are negatively regulated (re-
pressed) in a ‘ring’. Transcription and translation are modeled as one delay.

The extended delays we choose to work with areτ1 = τ2 = τ3 = 127 seconds.
In contrast to the more detailed stochastic formulation, here the delay from promoter
activity to protein is summarized in one term, and so we are modeling a 100 second
transcriptional delay, ahead of a 5 second period to transcribe the ribosome binding
site (RBS), and 22 seconds to translate a generic 1000 bp mRNAto protein, at 45
bp/s [Phillipset al., 2008].

How does the stability of the limit cycle depend upon delay? The two principle
characteristic Floquet multipliers are shown below, as a function of varying one delay
parameter. Due to symmetry, all three delay parameters clearly have the same effect.

We can here confidently conclude that increasing delays on any (and more intel-
ligently, all) of the transcriptional delays in the repressilator increases the stability
of the oscillator, making it less susceptible to perturbations from the oscillator limit
cycle. This is a significant theoretical result, seeing as the nominal characterization of
the repressilator only offers a barely functioning oscillator when studiedin vivo. This
result also agrees with the delay-dependancy of the more detailed stochastic model
of the repressilator regulatory network.

To offer a more concise investigation, we take the sensitivity measure (3.60) at
the nominal parameterization, and see that our sensitivities are symmetrical across
the pathways,S= (0.00377,0.00377,0.00377). For large systems, these sensitivities
evaluated at the nominal case can give a clear summary of where delay can improve
the stability of the system, at a fraction of the computational cost required to search
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Figure 3.3 The two principle characteristic Floquet multipliers as a function of varying one
delay parameter. The first multiplier is constant atµ1 = 1 (dashed), while the second multiplier
µ2 (solid) rapidly becomes smaller as we increase the delay (note the logarithmic scale).
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the delay parameter space. There is no indication that the delay-dependence is neces-
sarily monotonically increasing or decreasing (though no counter example has been
found). While a sensitivity analysis by no means paints the complete picture, it can
offer a concise overview for complex networks, evaluating the delay-dependance of
each pathway at the nominal parameterization.

3.6 Analysis: Relaxation oscillator

The DDE model of the Barkai-Leibler relaxation oscillator will now be examined,
where transcriptional regulation is used for activation, and a hypothetical protein-
protein interaction between proteins A and B is used to form adecaying protein
C, see [Barkai and Leibler, 2000] for details. The protein-protein interaction is an
instantaneous reaction, and we choose to investigate delays only in the context of
transcription. A diagram of the circuit as well as the nominal limit cycle are shown
in Figure 3.4, and the delay-differential formulation is given as:

dpA

dt
= −β pA(t)+ α0 + α

pA(t − τA)

1+ pA(t − τA)2 − γ pA(t)pB(t) (3.64)

dpB

dt
= −β pB(t)+ α0 + α

pA(t − τB)

1+ pA(t − τB)2 − γ pA(t)pB(t)+ β pC(t)

dpC

dt
= −β pC(t)+ γ pA(t)pB(t).

For parameter values, see [Vilaret al., 2002].
Recalling the delay-dependent stability of the stochasticrelaxation oscillator in

the previous chapter, again we find that increasing the delayfor the primary self-
activation pathway would decrease the stability, while increasing the delay on the
other pathway would in fact increase the stability, just as with the stochastic model,
but now we can compute the characteristic multipliers as a function of delay, plot-
ted below in Figure 3.5, and obtain a much more quantitative understanding. We
can again summarize the stability dependancy at the nominalparameters with the
sensitivity measure(SA,SB) = (−0.0694,0.0525). The sensitivity measure, which is
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Figure 3.4 A schematic of the Barkai-Leibler relaxation oscillator delay model, and the nom-
inal limit cycle. Note that the protein-protein interaction is direct, and plays no part in tran-
scription or translation (which are again modeled as one delay). The protein C is now shown
in the diagram, but serves as an intermediate species along the decay pathway when protein B
represses A.
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Figure 3.5 The two principle characteristic Floquet multipliers as a function of varying the
delay parameters for the relaxation oscillator withτA above, andτB below. The first multiplier
is in both cases constant atµ1 = 1 (dashed), while the second multiplierµ2 (solid), which
quantifies the stability of the limit cycle, is delay-dependent, and varies as we move eitherτA
or τB from the nominal configuration (whereτA = τB = 127 seconds).

significantly faster to calculate, summarizes the delay-dependance well, given that
the dependancies are still monotonic (though opposite) even in this case. The useful-
ness of such local sensitivity measures, along with the question of monotonicity, are
topics open for future study.
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4. Conclusions

By examining the role of delay in both stochastic and deterministic models of ge-
netic regulatory networks, we establish a theory for delay sensitivity and tuning that
proposes a new paradigm for bioengineering. Our analysis shows that delays play a
particularly important role in the dynamics of oscillatorynetworks, and delay engi-
neering can be used to considerably improve the stability oflimit cycles in oscillator
models. By applying the methods of sensitivity analysis forDDE models developed
here, large regulatory networks (natural or synthetic) from a wide range of biological
inquires can potentially be examined for delay tuning. Thisthesis also outlines meth-
ods for stochastic model analysis that can be performed to validate the dependancy
at a greater level of detail.

The strong agreement between the stochastic modeling approach, derived from
the Chemical Master Equation, and the deterministic approach, formulated using
delay-differential equations (DDEs), suggests that the delay effects observed in this
thesis are valid to the extent that the CME and DDE modeling approaches are valid.
But whether or not biology agrees is admittedly another matter.

It is important to emphasize that the results presented in this thesis are theoretical
in nature, and that at this time these predictions have not been verified in biology. A
‘wet’ investigation is the obvious next step, and towards this goal, an initial investi-
gation is currently being undertaken within the Murray Group at Caltech.
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