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1. Introduction

The discovery of the genetic code, initiated by the discpeéithe structure of DNA
by Watson and Crick in 1953, fundamentally changed the aatfibiological sci-
ence. With the identification of genes came the understgrttist biological systems
were dominated by vast information processing systemscangplexity of which
have only now begun to be understood. Concurrently, theemadeld of systems
engineering was being developed to tackle the growing ehg# of organizing com-
plex artificial systems emerging in the early days of spadfedesign and computer
architecture. These two fields have now merged in the fornhefrterdisciplinary
field of systems biologywhere the tools of systems engineering are now helping to
organize our understanding of biological systems, withakkable success.

By viewing cells as modular systems of systems, systemsdidhelps to ana-
lyze incredibly complex biological problems, and oftersthinderstanding has helped
reveal even more (and often quite subtle) complexity. Systkiology has helped to
raise fundamental questions of architecture, such as itjelyhoptimized tolerance’
and ‘robust yet fragile’ conceptual framewaorks of systersigie [Carlson and Doyle,
1999; Carlson and Doyle, 2002]. Historically, one of the tengcessful applications
of the systems engineering perspective has been the analygenetic regulatory
networks [Jacob and Monod, 1961; Glass, 1975].

Genetic regulatory networks consist of interacting gemelspaioteins that are dis-
tributed throughout a cell and interact in a network of attan and repression. Each
gene codes for a specific protein, many of which go on to detigarepress other
genes in the organism by binding to the genesasscription factors Activationof a
gene occurs when a protein binds to the DNA region near the ged facilitates the
initiation of transcription by RNA Polymerase (RNAP) maldes, whilerepression
of a gene occurs when a protein binds to the DNA region neagé¢he and inhibits
this initiation.

Transcription by RNAP results in the production of messeriRdA (MRNA)
macromolecules. These mRNA molecules are then freelyl&i@usby ribosomes,
which bind to the mRNA and systematically translate the germde to assemble
specific proteins. These proteins then often serve as tydramscription factors that
return to activate or repress genes, while mRNA serves annm@diate role in the
dynamics [Albertset al, 2003].

In the context of systems and control, these networks thbibixamiliar feed-

Protein .
e _

Gene mRNA— ', . :
Transcription 4 \/’ "’I Translation ~\’/ W
Factor‘ /
— - ——p —————
Promoter Gene_ Transcription

Site

Figure 1.1 The central dynamics of molecular biology. Regions of DNAlezthgenes are
transcribed to form mRNA, which are then translated to forotgins. Some proteins then act
as transcription factors, regulating gene expression hgihg to the promoter site as either an
activator or repressor, while other proteins go on to perfaiwide range of functions with the
cell. In this figure, repression is shown.
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Figure 1.2 Three basic genetic regulatory networks that will be exmdi and examined
in this work. Clockwise from top left, the bistable toggleish, the ring oscillator, and the
hysteresis-based oscillator are shown. Introducing def@yhe transcriptional pathways can
drastically effect the stability of the system models.

back dynamics [Alon, 2007]. Auto-repression, whereby aegexpresses a protein
that then represses its own gene, and thereby down-regigt@vn production, is a
classic form of feedback moderation in genetic regulat@tyvorks. Auto-activation,
whereby a gene expresses a protein that activates its oven cgmbe used to amplify
aresponse to an initial input signal. These two forms off@gpalation together occur
more than 40 times in thE. coli genetic regulatory network [Alon, 2007]. During
the past decade, principles of control theory have helpdthininate these complex
interaction networks that are so common in engineering.

Beyond simple autoregulation, common ‘motifs’ in netwohkese been identified
across a wide range of organism genomes [Mil@/, 2002]. These network motifs
appear as small, task-specific modules embedded in a langéext. For example,
feedforward motifs [Mangan and Alon, 2003] in differentargements appear to
be widely used by cells to accelerate or delay signalingwigt motifs enable a
modular architecture for biological signaling, and the egeace of this modularity
can be explained directly by evolutionary forces [Kashtad Alon, 2005].

Ultimately one of the grandest challenge in cellular infatibn processing is
noise [Kaerret al, 2005]. The cellular signaling environment is dominatedbyw-
nian motion, and at low molecular concentrations, the ieherandomness of the
biochemical reactions tends to dominate the cellular dyognmWhile some pro-
cesses intentionally utilize stochasticity to achievenaltgpic heterogeneity [Raser
and O’Shea, 2005], in most tasks this variability is highhdasirable. To tackle this
challenge, principles of control theory have been utilimedngineering stability into
genetic regulatory networks [Becskei and Serrano, 2000].

This emerging field of bioengineering stability is the cahsiubject of this thesis.
Where previous work has focused on reaction network topeddéastyet al, 2002],
this thesis develops principles for tunidglaysin genetic regulatory networks as a
means towards engineering stability. In this work we exanthre role of delay in
both stochastic and deterministic models of genetic régrglanetworks, developing
a theory for delay sensitivity and tuning.

In [Uganderet al, 2007], the consequences of delay upon stability were siésll
as part of an analysis of one specific oscillatory networlqggle oscillator, which
was delayed using extended transcriptional pathway cascadmeans of delay that
is prohibitively complex for practical bioengineering.this thesis the study of delay
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is generalized, and the possibility of embedding delaysctly into the genome is
studied, by a much more practical mechanism. It is our hogitkis work will con-
tribute a useful design principle for controlling noise Engtic regulatory networks,
and hopefully play a role in advancing the rapidly develgpamd increasingly excit-
ing field of bioengineering.
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2. Stochastic Simulation

In this chapter, we examine detailed, stochastic modelseottic regulatory net-
works, using a discrete, probabilistic framework true te thiscrete, probabilistic
dynamics of biochemical systems. While the inherent coritgi@f such modeling
limits the extent to which solid conclusions can be drawm,gmal with this analysis
is merely qualitative insight, while a more tractable detifferential equation (DDE)
formulation presented in the next chapter will offer preaisetrics for stability anal-
ysis. We examine both stable and oscillatory regulatoryvoets, and attempt to
analyze the delay- dependent stability of their attracteos the biochemical oscilla-
tors, we present computational results that demonstratdelay-dependent stability
of the limit cycles underlying the stochastic dynamicstddticing delay tuning as a
novel means of bioengineering stability in genetic regquianetworks.

2.1 The Chemical Master Equation

The Chemical Master Equation (CME) is a system of ordinaffedintial equations
describing the time evolution of the probability distrilout of a system across pos-
sible concentration states. In biochemical systems, imaevents constitute state
transitions between concentration states, in what amdartdarge continuous-time
Markov process. The CME modeling approach is based on oeactwithin a con-
fined and well-mixed vessel, and assumes that collisionfsegaent, while collisions
with proper energy and orientation (leading to reactions) ralatively infrequent.
Furthermore, it is only strictly correct for reactions betm at most two reactants
[Van Kampen, 2007]. The basic CME also assumes that reactiminstantaneous,
and not delayed, requiring a modification which we will retto later. In what is a
fully Markovian framework, instantaneous reactions (s@hs) are modeled as Pois-
son distributed events. For biochemical systems, the seosdible discrete molec-
ular concentration arrangements define the set of posg#tlesstypically the semi-
infinite discrete sef.” .

Let us introduce a basic system of gene expression as an kxampen model-
ing the expression of a particular mMRNA and protein pair,dtate would be given
by the count of molecules in the systex= (#mRNA#protein) € Zi. The number
of copies of ‘Gene’ is assumed to be constant, and is therefot part of the state.
The dynamics of the system would be described by the follgdnir reactions,

Gene
MRNA

MmMRNA
Protein

Genet+ mRNA (2.1)
MRNA+ Protein

0

0,

N

wherek; are the reaction rates. The state space and transitionfifosyistem are
summarized in Figure 2.1 below.

Itis important to note that the transition propensitiesraye-uniform, as the birth
process for protein is a first order reaction dependent upemtmber of mMRNA
molecules in the system. Likewise, the propensities of #eag reactions are de-
pendent upon the concentrations of the decaying molecaglegell. In this simple
example, the reactions are all simple birth and death @& tbut more complicated
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Figure 2.1 The semi-infinite state-space lattice for a basic mMRNAgirosystem.

mRNA

stoichiometries can lead to a complicated mesh of trams#trcows. Furthermore, the
state space of systems with many species becomes a highsional lattice, where
30 or more species is hot uncommon for basic systems. Thsitteempathways are
however sparse for almost all systems. With further emghéss important to un-
derstand that this is not merely a uniform random-walk, bat the state-dependent
propensities, which for second-order reactions are neafinlead to a highly non-
trivial energy landscape that in turn governs the time ewgl\probability density
function of the system.
Generally, the Chemical Master Equation is written as

—R(t) = Zaiij(t), Viel, t>0, (2.2)
JE
RO = P° viel, (2.3)

where (2.3) is the initial conditior®; (t) is the probability of being in statpat timet,

| is the countable index set of the state space agnd the transition propensity from
state| to statei. For first-order reactions, the propensity is given by thedpct of
the reactant concentration and the reactionkgte appropriate units. For the simple
example introduced above, the CME becomes, with the obwalexing:

d

ap(mm) (t) = _a(n,m) ID(n,m) (t) + (2-4)
A(n—1,m)Pin—1,m) (t) + &nrrmPinram () +
Anm-1) I:’(n.mfl) (t) + Anmt1) P(n.m+l) (t)7 vnme Z,

d

ap(n’m) (t) = — (kl + kan+ kon -+ k4m> P(n.m) + (2.5)
kiPn—1,m)(t) + Ks(N+ 1)Pni1m(t) +
kaNPrym-1) (1) + Ka(m+ 1) P ey (1), vnmeZ,

wherek; are the reaction rates from (2.1), in the appropriate uMisor, straight-
forward modifications are required at the boundanes 0 andn = 0.

Notice that this is merely an infinite, sparse, linear systérdifferential equa-
tions, and for systems with modestly compact support, nmggttiat only a manage-
ably few number of states at any time have probability oveiwargsmall threshold,
the state space can be truncated and the time-evolving llivppalistribution can
be found with impressive precision by the method of Finitet&Project (FSP), see
[Munsky and Khammash, 2006]. The FSP method allows for tipicgtion of ele-
gant linear systems theory, but is however only an efficippt@ximation for smaller
systems or for studying equilibrium dynamics of at most medsized systems, and

10



2.1 The Chemical Master Equation

we will not employ it here. Protein concentrations, whicm easily number in the
thousands within a given cell, quickly lead to a prohibiyvkarge state space. It is
also worth briefly mentioning that hybrid solvers have beewvetbped, that combine
discrete, stochastic and continuous, deterministic nioglefor systems with multi-

scale dynamics [Haseltine and Rawlings, 2002; Tian anddgerr 2004], though
these solvers have yet to be rigorously analyzed for coresst

As a further comment, the CME is in fact a discrete-statesmnalog to the
Fokker-Planck Equation, where the state space is insteatinaous, and a high-
dimensional PDE formulation results. This connection heenbexploited to perform
discrete-to-continuous approximations, where the CMpma@ximately solved as a
Fokker-Planck formulation applying numerical methodsRDEs, see [Sjoberet al,
2008] for details.

The preferred method for analyzing probabilistic modelsbmichemical sys-
tems is Monte Carlo simulation, by applying what is commardiled the Gillespie
Stochastic Simulation Algorithm (Gillespie SSA) [Gillegpl1976; Gillespie, 1977].
In 1976, Gillespie introduced two efficient methods for séngptrajectories from
the Chemical Master Equation, known as the Direct Method YR~ First Reac-
tion Method (FRM). Various improved methods have been ddrifrom these two
methods, the most notable being the Next Reaction MethodNB Gibson and
Bruck [Gibson and Bruck, 2000]. However, recent analysis steown that the Next
Reaction Method is not a universal improvement, and funteBnements have been
proposed by Petzold and colleagues [@&al, 2004; Li and Petzold, 2006], leading
to the Optimized Direct Method (ODM) and Logarithmic Dirédethod (LDM). In
this work, we will limit ourselves to the original Direct M&td by Gillespie, and
ignore the debate regarding implementational details.

The Gillespie algorithm entails a straightforward simugatof one realization
from the stochastic biochemical system, randomly simdatine reaction at a time.
The algorithm below is presented f8species antll reactions. We also introduce the
notationa, to denote the propensity of reactiojandas n := y}_; & to denote partial
sums across the reaction propensity vector. The té&ynand B, refer to the state
changes for the reactants being removed and products beiegl @uring reaction.
These merit separate notations in preparation for the ddl&illespie algorithm yet
to come.

Algorithm 2.1 The Gillespie Direct Method
Require: Initial ConcentrationrX = (Xy,...,Xs), tend-
1: timet=0
2: whilet < tengdo
3 Compute propensities,, n=1,...,N, at current stat.
4 Generate uniform random numbersu, € [0,1].
5: Compute time to next reactiodt = —In(uy/as n).
6: Find reaction channel, s.t.asn-1 < Wpayn < asn.
7
8
9:

Update StatX according toR, & P,.
: Updatet =t + At
end while

Here we see that step 5 generates the time to the next reficinoran exponen-
tial distribution with the rate parameter given by the cuativk probability of any
reaction occurring, and step 6 subsequently selects dowrdmnt their relative prob-
abilities of occurrence. The implementational improvetaenentioned earlier are
mostly concerned with minimizing recalculation of the peapities in step 3 and the

11
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Figure 2.2 Reaction events during the Gillespie SSA simulation, whachur with expo-
nentially distributed time intervals, with a propensitkea by the overall propensity of any
reaction occurring.

sums in steps 5 and 6, in particular by using custom datatstescto efficiently find
the reaction channel in step 6.

The Gillespie SSA results in a single trajectory drawn frdma time-evolving
probability density function, and to fully understand tlystem, an ensemble of tra-
jectories is typically studied. In Figure 2.3, an ensemll&é@d simulated trajecto-
ries from the basic mMRNA-protein expression system disgmisbove are presented
(showing only the protein expression), and such an enseprblédes a confident
overview of the nature and variability of the system dynapiere entering a steady-
state equilibrium between production and decay.

The Gillespie SSA approach has been remarkably succedsbhlagacterizing
the stochastic dynamics of biochemical reaction netwat&spite its computational
complexity, see [McAdams and Arkin, 1997] for an early s@scstory. Yet a se-
rious short-coming of the CME approach, as mentioned eaitigts inability to
model reaction delays, since the approach assumes simglanianeous reactions,
and not abstract macro-reactions, sucin&NA— mMRNAJ- Protein, which in truth
is far from instantaneous. As computational resources gemgn, simulations have
been performed that model the movement of individual RNAyparase (RNAP)
molecules along DNA (as well as ribosomes along mRNA) withebgair resolution
[Kosuri et al, 2007; Kosuri, 2007]. This movement results in a cascadeodsen
distributed events, thus incorporating delays within tharkévian framework and
respecting the delay time implicit in transcription andnsiation that is otherwise
ignored by the Gillespie approach involving abstract sgeciVith gene lengths in
the thousands of base-pairs, this unfortunately requitb®@sand-fold increase in
computational effort, by replacing each birth reactiontwétiengthy cascade of reac-
tions. This approach also introduces the possibilitylelngle of modeling the colli-
sion dynamics of RNAP along the DNA, the mechanics of whickehanly begun to

1600

1400 -

1200

1000

800

Protein count

600

400~

200

0 1 1 1 1 1

6
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Figure 2.3 An ensemble of 100 trajectories for the basic mMRNA-protejoression model,
simulated using the Glllespie stochastic simulation athor.
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emerge [Greive and von Hippel, 2005; Herbettal, 2006; Tolic-Norrelykkeet al,
2004; Epshtein and Nudler, 2003], and much is still unknoldisregarding RNAP
collisions, the cascade of reactions used in base-pailuteso modeling is well ap-
proximated by delays, which brings us to the next section.

2.2 The Delayed Chemical Master Equation

Using delays to approximate reaction cascades is drdgtinate efficient than base-
pair resolution modeling, but this comes at the cost of brepthe Markov property
of the system. With delayed reactions, there are now reectocurring “off-stage”
with delayed results, and these events are not part of tite déscription, but cer-
tainly effect the future of the system. In contrast, base4@solution modeling is
still Markovian, as the state of the system incorporateddbation of RNAP along
the DNA, and all events are still memoryless.

The delay times used to approximate the reaction cascaddsecaxpected to be
gamma distributed, owing to the property that the sum odli.exponential stochastic
variables is gamma distributed, a property that is note&ibgon and Bruck, 2000].
This is reality not true, since physical principles of cdiigaequire RNA polymerase
molecules to leave the DNA in the order that they attach. Th#enthen becomes
entangled in the aforementioned unresolved question of RE@llision dynamics,
about which little is known. For this reason, in the abserfdenowledge, the delay
times are modeled as constant for the set gene length, ateaagavrate of RNAP
transcription and translation of 45 bp/s [Phillipsal, 2008].

A delayed variant of the Chemical Master Equation can be titaited, withM
delay timescales, as:

M
%P.(t) = %ajpj(twrn;(J;aump,-(t—rm)) (2.6)

This is in fact a delay-differential equation (DDE), withrslarities to the problems
we will be studying in the next chapter, but we will do not arzal the delayed CME
as a DDE, as its size makes it difficult to approach directhy again the Monte
Carlo approach pioneered by Gillespie will be essentiak dblayed Gillespie al-
gorithm requires only basic modifications in order to sinmilkajectories from the
delayed CME. For the delayed Gillespie algorithm to be mmegfni, we need to more
precisely define what it is we are modeling.

Let us again consider the example of basic gene expressionpty respect the
time delays inherent to transcription and translation hwhis in mind, a more truth-
ful model of gene expression hivb= 4 delay timescales (for a single gene),

Gendt) L Gengt+ Tps) + MRNAL+ 1) 2.7)
MRNAL) % mRNAt + Tips) + Protein(t + 12) (2.8)
mRNAL) < 0 (2.9)
Proteint) % 0. (2.10)

wherertps is the time it takes the RNAP to clear the promoter site whexe RNAP
can then bind, about 1 second, ands the time until the ribosome binding site is
fully transcribed, making the mRNA free for translationaltiation. Typically the

13
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Figure 2.4 Transcription and translation. Transcription initiatesen an RNAP molecule
binds to thepromoter siteahead of a gene, shown here as a black arrow. It then begms tra
scribing the gene, producing mRNA, until it reaches a st@usace at the end of the gene.
Once the ribosome binding site (RBS) has been transcrilim$ames (green, marked R) bind
the the nascent mRNA transcript and begin translation aagtbduction of Protein. When
transcription is completed, the mRNA molecule remains/adbr translation until decay, by a
process not shown here. Protein molecules remain activeeinfunction until decay, also by
an process not shown here. Both transcription and traoslaticur at approximately 45p/s
[Phillips et al, 2008].

ribosome binding site occurs nearly immediately after ttmnmwter site, resulting in
71 being on the order of 5 seconds.

This idea that mRNA is active already after RBS-transariptielies on the ar-
chitecture of prokaryotes, whereby transcription anddli@ion occur in the same
vessel, in the absence of the nuclear membrane found inyamikar A schematic
illustration of the events of transcription and translat@an be found in Figure 2.4.

In translation,T;s is the time it takes thebosometo clear the ribosome binding
site (rbs), analogous to the time it takes the RNAP to cleauptiomoter site1(:s) in
transcription, and is also about 1 second. The dejayg the time it takes the protein
to be translated in full. By example, for the 1080 base-paii gene commonly
used in synthetic biology, this amounts to 24 seconds. fbhdelay time can also
be thought to include the time it takes the protein to becomehemically ‘active’,
an activation that may entail potentially complex proteatding, or require post-
translational modification in various ways, andnay therefore be drastically longer.
Such activation is however not considered in this studyijttaitould be kept in mind
as a potential window for delay engineering.

The primary window for delay engineering in this studyisthe delay time until
the ribosome binding site is transcribed. In prokaryothe, ribosome binding site
can in fact be located a long distance away from the startefriRNA transcript,
and it is not uncommon that multiple genes occupy the same AvtiRscript, tran-
scribed behind the same promoter site. Thus we present vat delay engineering
approach, whereby it is fully possible to engineer a deld&y angenetic network by
either inserting a lengthy block of ‘junk’ DNA ahead of the RBor by placing an-
other ‘dummy’ gene upstream of the relevant gene within #mesmRNA transcript.
The latter approach can be seen as favorable, seeing asunalifbe of a randomly
chosen sequence of ‘junk’ DNA may be difficult to guaranteéhvhe possibility
of hairpins and other secondary structures introducingamed effects that would
not be caused by a properly chosen stable ‘dummy’ gene. Aaha@f these delay
methods in shown in Figure 2.5, where an idea for eukaryalaydengineering is
also briefly presented.

Let us now present the delayed Gillespie algorithm. At fitahge, it may appear

14
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Figure 2.5 Delay methods. In order to delay the release of an activeeprotve propose
two methods for delay engineering in prokaryotes. Theséoust entail modifying the DNA
surrounding the gene by inserting either a ‘junk’ delay,roirdermediate ‘dummy’ gene ahead
of the gene targeted for delay. For eukaryotes, it is possibliew intron/exon splicing as a
means of delay, and lengthy introns can achieve a similaydeffect. With this approach,
introns are revealed as more than ‘junk’ DNA, serving to ttiretemporal dynamics of the
genetic regulatory network.
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Figure 2.6 Reaction events during the delayed Gillespie SSA simulafddagram borrowed
from [Barrio et al, 2006] (supplementary text).

significantly more complicated that the nominal Gillesdgoaithm. The differences
are however straight-forward. For non-delayed reactiewstything is the same. For
delayed reactions, the reactasare removed in the same fashion, while the prod-
uctsPny, ..., P are sorted into the simulatodglay queugwhich is easily maintained
as a linked list data structure. The possibility for mukigiroduct release times is
no major complication, and as we saw above, the biocheméeaitions we will be
modeling require two product release events. The produantevare assumed to be
ordered, withty; < ... < Tnk. The event time for the most immanent delay product
is maintained in the variablg;, and when the simulation crosses this event time,
the most immanent delay event occurs as an interruptionrdlbeant products are
introduced, and the simulation restarts from this evenetifrhe memoryless prop-
erty of the exponential distribution makes this possibledidgram of the sequence
of reaction events during a simulation can be seen in Figire 2

One of first formal attempts at constructing a delayed foatioh of the Gillespie
algorithm came in the work of [Bratsugt al, 2005], but they unfortunately present
a flawed algorithm. In the work of [Barriet al, 2006] and most carefully [Cai,
2007], the mistakes are resolved, and agreement with tlagetblChemical Master
Equation is shown. In the original algorithm due to Bratstirale line 15 of the
delayed Gillespie algorithm (as it is presented here) isnmctly restricted to only
occurring when the selected reaction is non-delayed, whediects to include the
time it takes a delayed event to randomly occur, prior to the 8f the delay wait.
For a detailed analysis, see [Cai, 2007].
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Algorithm 2.2 The Delayed Gillespie Direct Method
Require: Initial ConcentrationrX = (Xy,...,Xs), tend-

1: timet =0

2: whilet < tengdo

3 Compute propensities,, n=1,...,N, at current stat.

4 Generate uniform random numbersu, € [0,1].
5: Compute time to next reactiodt = —In(uy/ay n).
6: if t+At <ty then
7: Find reaction channel, s.t.asn-1 < Uzayn < asn.
8: if (Reactionmis a delayed reactiorthen
9: Update StateX according toR.
10: PlaceR,y,...,Pxinto delay queue dt+ 1n1,...,t + Tk
11: tqr = Min(tg1,t + Tna).
12: else(Reactionn is not delayed reaction)
13: Update Stat&X according tdR, & P.
14: end if
15: Updatet =t + At
16: else(Run delayed reaction scheduled)
17: Update StateX according tdPy;.
18: Updatet = tg;.
19: Pop delay queudd; = t4, etc).
20: end if
21: end while

2.3 Delay-dependent stability

Our goal is to analyze the delay-dependent stability odettrs for biochemical sys-
tems of interacting genes and proteins, also known as geregfulatory networks.
In a stochastic setting, this amounts to studying the vaeani the attractor distribu-
tions, as sampled across an ensemble of trajectories frtapedeGillespie stochas-
tic simulations. Because such simulations are so computdiy intensive, we have
chosen to present simulation ensemble distributions at ardparse grid of delay
parameters for the networks we study. This should lead theéereto develop a sat-
isfactory intuition, and we provide a more rigorous anayssing delay-differential
equations and Floquet theory in the next chapter.

This crude approach is due to the fact that methods of sahsitinalysis for
stochastic CME models are currently only in their infancliefie have been limited
advances regarding sensitivity analysis for stationastesys, which try to develop
computationally tractable correlates of sensitivity [@wan et al, 2005; Cao and
Petzold, 2006] with some success. In a very elegant apigiicaf measure theory for
non-delayed systems, Girsanov measure transforms [Pigasund Arkin, 2007] can
be used to very quickly compute the sensitivity of variousctionals with respect to
reaction rate parameters. This method is however not afpdico delayed systems,
and especially not to delay parameters.

We apply our analysis to three genetic regulatory netwdilshe Gardner toggle
switch, (2) the Elowitz repressilator, and (3) the Barkaikller relaxation oscillator.
The stochastic dynamics of the toggle switch is shown to ailgn exhibit robust
indifference to delay manipulations, while the stabilifyttoe limit cycles underlying
the stochastic oscillators is shown to be highly tunableugh delay engineering.
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2.4 Analysis: Toggle Switch

2.4 Analysis: Toggle Switch

First, we study the delay-dependent stability of the Gardoggle switch genetic
regulatory network [Gardnegt al, 2000]. The toggle switch is one of a few ‘clas-
sic’ synthetic genetic regulatory networks, and along wihié repressilator, one of
the few to have been built and studigdvivo in E. coli, where its functionality has
been validated. The toggle switch is a bistable network bee of two protein con-
centrations can be stably expressed, resulting in a phase syth two stable fixed
points, and effectively offering a digitdlit of memory storage. We wish to examine
the stability of these stable fixed points as delay is intoeduinto the network. By
examining the steady-state distribution surrounding tabls attractors (when one
of the concentrations is ‘high’), we can study the effectdelfly upon stability.

AI><IB
-— -

Figure 2.7 A schematic diagram of the Gardner toggle switch genetialatgry network.

A schematic diagram of the toggle switch regulatory netwisrkhown in Fig-
ure 2.7, while a more complete view of the reactions that mgkéhe full network
is presented in Table 2.4. The repression mechanism ushg imbodel features two
operator sites, effectively serving as a combinatorial @i gAlon, 2007]. This de-
sign choice was made to strengthen the repression actinyn@inimize attractor
crossover, where stochastic fluctuations induce a ‘flippafhthe toggle switch. The
repression mechanism and overall parameterization itk the original model
of the repressilator [Elowitz and Leibler, 2000] analyzecn

Figure 2.8 shows histograms over iR x Ps) phase space surrounding the sta-
ble fixed point, at four different delay parameterizatidfisst, we consider the nom-
inally delayed modeltia = 118 = 5 seconds, top left), which incorporates the delays
inherent to transcription and translation, but the systas ot been synthetically
delayed in any way. This model is then compared to models edatisiderable (200

Transcription & Translation Promoter region Decay
Geneh(t) LN Geney(t+ Tps) + Ma(t+11a) | Genelh+Bs Kk, GeneA | Pa k.0
GeneA(t) £k, GeneA(t+ Tps) + Ma(t+T1a) | GeneA K, GeneA+Ps | Ma . 0

GeneA(t) £, GeneA(t + Tps) + Ma(t+11a) | GeneA+ P LN GeneA
Ma(t) ke, Ma(t + Trbs) + Pa(t + 12a) GeneA LN GeneA +Ps

GeneB(t) LR GeneB(t+ Tps) + Mp(t+118) | GeneB +Pa ks, GeneB | s~

GeneRB(t) Eh, GeneB(t+ tps) + Mp(t+118) | GeneB LN GeneB+Pa | Mg K,

GeneB(t) Eh, GeneB(t+ Tps) + Mp(t+118) | GeneB +Pa ks, GeneB
Mg(t) fe, Mg (t + Trps) + Pa(t + T28) GeneB ‘6. GeneB +Pa

Table 2.1 The complete set of reactions behind the delayed togglelswibdel. The delays
are confined to the transcriptional and translational reasf and timing arguments have been
omitted from the instantaneous reactions. The subscriatina for the genes refers to how
many proteins are bound to the gene as transcription fa@Gearse) is an actively transcribing
gene, whileGeneX andGeneX are both repressed, with some leakage transcription iadlud
in the model £ = 10-3). The delaysria and 115 are explicitly different, to emphasize the
subsequent independent investigation. The translatiaysiea, Tog assume generic 100p
genes. For reaction rate parameters, see [Elowitz anddreft00].
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Figure 2.8 Histograms across the projected phase space at four diffdetay parameteriza-
tions, when the toggle switch resides in tBg £0ff, Bs =O0n) basin of attraction. Examining
300 simulated hours of data, we see little change in the gts@de distribution. The his-
togram colormap is logarithmic in scale, seeing as the sysfgends the majority of its time
nearPy = 0. Notice the difference in scale betweenandPs.

second) transcriptional delays incorporated in eithereG&nGene B, or both.

Comparing the histograms shows that the effect of synttdelays (on either
transcriptional pathway) upon the stability of the togghétsh is difficult to identify
conclusively, and appears to be negligible or nonexist€he DDE analysis per-
formed later will corroborate this finding, though in facbshthat the stability of the
system is slightly reduced for extremely long delays, when 500 seconds. This
direction of change agrees with the traditional understandf delays within con-
trol and dynamical systems, that retarded feedback mesingniesult in decreased
stability for equilibrium points.

From our stochastic model analysis, we conclude that thgl¢agyvitch does not
exhibit any significant sensitivity to delay. Our analysecbmes considerably more
interesting when we turn our attention to oscillatory netsan the following two
sections.

2.5 Analysis: Repressilator

Next, we study the delay-dependent stability of the Elowapressilator’, an oscil-
lator consisting of three genes expressing proteins theiess each other in a ring
[Elowitz and Leibler, 2000]. As opposed to the functionajdgte switch, when the
repressilator is studieih vivo in E. coli, its oscillations are evident but disappoint-
ingly far from regular. This irregularity is a central maion for this thesis, and
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2.5 Analysis: Repressilator

ERERER

Figure 2.9 A schematic diagram of the Elowitz repressilator genetgulatory network,
featuring three genes that express proteins that act asctiption factors, repressing each
other in a ring.

engineering stability into synthetic regulatory netwoskgh as the repressilator can
be considered a leading challenged in the emerging diseigf synthetic biology.
With the investigation of delay-dependent stability preed here, novel engineering
principles emerge that may be used to increase the stadiilitye oscillator.

A schematic diagram of the regulatory network is shown irurég2.9. The dia-
gram offers an effective overview of the regulatory netwevkile once again a more
extensive documentation of the reaction network is showirabie 2.5. Like the tog-
gle switch, the repression mechanism used in this modelfesicombinatorial OR
gates. This approach is consistent with the stochastic hfetteout delays) used in
the original repressilator paper [Elowitz and Leibler, @@ ombinatorial operators
were chosen to obtain cooperatively in repression anabtmuhe ODE modeling
approach in the same paper, which is the basis for our DDE hseéa later.

First we will study the nominally delayed model. A comparisi the published,
non-delayed model and the nominally delayed model can be kelw in Fig-
ure 2.10, presented as trajectories in the three-dimesisitete spacéPa x Ps x o).
Under a general principle of ergodicity, we have chosenudysbne trajectory sam-
ple for a ‘long time’, rather than an ensemble of trajectarid/e see in the figure that
the non-delayed model exhibits a notably different eneaygyg$cape inferable from
the phase-space trajectories, compared to the more coroecinally delayed model.
In the nominally delayed model, we observe more densely estrated behavior,

Transcription & Translation Promoter region Decay

Geneh(t) K, Geney(t+ Tps) + Ma(t+11) | GeneA+Rc k, GeneA | Pa k.0
GeneA(t) £, GeneA(t+ Tps) +Ma(t+11) | GeneA LN GeneA+Fc | Ma L)
GeneA(t) & GeneA(t+ Tps) + Ma(t+11) | GeneA+Rc LN GeneA

Ma(t) ke, Ma(t+ Trbs) + Pa(t + 12a) GenehA ks, GeneA + P

GeneB(t) LN GeneB(t+ Tps) + Mp(t+11) | GeneR+Pa ks, GeneB | B —
k7

GeneB(t) th, GeneB(t+ 1ps) + Mg(t+11) | GeneB LN GeneR+Ps | Mg —
GeneB(t) £—> GeneB(t+ Tps) + Mp(t+11) | GeneB +Pa ks, GeneB
MB(t) Mg(t + Trps) + Pa(t + ToB) GeneB 5. GeneB + Py

Gene@(t) LN Gene@(t + Tps) + Mc(t+11) | Gene@+Ps Kk, GeneG | o =0
GeneG(t Eh, GeneG(t + Tps) +Mc(t+11) | GeneG LN GeneG+PRs | Mc . 0

)
GeneG(t) LN GeneG(t + Tps) + Mc(t+11) | GeneG+Ps ks, GeneG
) —

Mc(t LNV c(t+ Trps) + Re(t+ Toc) GeneQE’aGeneq+Ps

Table 2.2 The complete set of reactions behind the delayed Elowitzessiiator model.
The translation delayér,x ) are given by the lengths of the genes from the original design
(1080, 675, 858) base pairs at BH/s results in(Toa, T2, Toc) = (24,15,19) seconds. All
other delays are the same as for the toggle switch. For oeadie parameters, see [Elowitz
and Leibler, 2000].
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Figure 2.10 A comparison between the (above) non-delayed and (belom)nadly delayed

( 11 =5 s) stochastic models of the repressilator. To the left,eeel? hours of time series data
for the protein concentrations in the system, after theesydias entered steady-state. To the
right, we see a phase spaé® & Ps x Pc) showing 48 hours of simulated behavior. From the
phase space diagrams it is evident that the model incoipgreelay features a significantly
more attractive limit cycle, with fewer extreme oscillaif

with fewer extremal oscillations, and we also see eviderica stronger repelling
force away from the equilibrium point at the center of theiltator. Qualitatively
speaking, we see that the delayed model oscillates alongra stable limit cycle.
Does this improvement continue when we introduce synthustiays?

When we modify the delay time, for the three genes, as suggested earlier and
diagrammed in Figure 2.5, we see that the trend continugsiré-2.11 shows his-
tograms across the phase space, projected into the plamalniar the equilibrium
axis (Pa = Ps = ), at 4 different delay parameterizations. First the nomdedhy
of 11 = 5 seconds, and then with increasing delays of 105, 205, ahds&0onds,
assuming ‘junk’ of ‘other gene’ regions corresponding t®,1200, and 300 seconds
of delay.

In Figure 2.11, the normalized stationary autocorrelafiorctions forPa(t) are
also included at each delay configuration. These functitaaslg show how the auto-
correlation peaks at integer multiples of the oscillati@enipd become much stronger
as delays are introduced. Without synthetic delay, thecautelation is washed out
by oscillator phase noise, muddling the peaks. The strengig of these peaks of-
fers a good quantification of oscillator stability improvent for the repressilator
stochastic model, but unfortunately, a similar analysiglie relaxation oscillator in
the next section will say almost nothing at all. Thereforea@e not rely on these
autocorrelation peaks as a measure of oscillator stability

For the repressilator, increasing the delay on all threestitoient genes appears
to increase the stability of the limit cycle attractor at toee of the stochastic dynam-
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Figure 2.11 Histograms across the projected phase space at four difféetay parameteri-
zations, along with the autocorrelation functionRaft) at that parameterization. The delay is
increased on all three genes. Examining 1440 simulatedstafudata, we see that as delay is
introduced, a ‘hole’ in the limit cycle becomes evident, seai by increased repelling forces
away from the equilibrium point at the center of the osailiahe autocorrelation functions
clearly show how the autocorrelation between cycles of tudllator are attenuated by delay,
overpowering the phase noise that muddles the nominalatscil

ics. Based on simulation data not shown here, this improwémén fact the result of
identical contributions from all three individual geneadawvhile it breaks the sym-
metry of the oscillator limit cycle, itis fully possible tathy only one gene and see an
improvement in the attractor stability. But inquiries swashthis require prohibitively
large simulation efforts to investigate fully, since a cartgtionally massive simula-
tion must be run at each parameter configuration. In dep#stigations are much
more feasible using the computationally tractable DDEiktalanalysis that follows
in the next chapter.

2.6 Analysis: Relaxation oscillator

Lastly, we study the delay-dependent stability of the Batlabler relaxation os-
cillator. The relaxation oscillator was developed by Badad Leibler [Barkai and
Leibler, 2000; Vilaret al, 2002] based on a straightforward hysteretic construction
whereby a primary gene activates itself and an associats gdrich in turn represses
the primary gene in a delayed fashion or on a slower timesta@scriptional regu-
lation is used for activation, and a hypothetical directt@ireprotein interaction be-
tween proteins A and B is used to form a decaying protein C|Baai and Leibler,
2000] for details. A schematic diagram of the network is shinFigure 2.12, and
the details of the reaction network are show in Table 2.6.0mtrast to the toggle

L
L.t
- -
Figure 2.12 A schematic diagram of the Barkai-Leibler relaxation datilr genetic regula-

tory network. The protein C is now shown in the diagram, botegas an intermediate species
along the decay pathway when protein B represses A directly.
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Transcription & Translation Promoter region Decay
Genei(t) Eh, Geney(t+ Tps) + Ma(t + T1a) | Genedy+Pa ks, GeneA Pa s,

GeneA(t) LN GeneA(t + Tps) + Ma(t+11) GeneA LN GeneAy+Pa Ma k. 0

Ma(t) 2 Ma(t + Trps) + Pa(t + T2A)
GeneB(t) Eh, GeneB(t+ Tps) + Mp(t +118) | GeneB +Pa K, GeneB Ps ks,

GeneRB(t) Kk, GeneB(t + Tps) + Mp(t+11) GeneB LN GeneB + Pa Mg K, 0

Ma(t) 2 Mg(t + Trns) + Pa(t + 2B)

Pa+Ps - R
Pl py

Table 2.3 The complete set of reactions behind the delayed Barkdilterelaxation os-
cillator model. The delaysi1a and 115 are explicitly different, to emphasize the subsequent
independent investigation. The subscript notation forgéees refers to how many proteins
are bound to the gene as transcription fact@sne) is an actively transcribing gene, while
GeneX is repressed. The translation delgy assumes generic 1000 base pair genes. For
reactions rate parameters see [Vidual, 2002].

switch repressilator model, the relaxation oscillatorsuaetivation promoter sites,
and combinatorial operators were not used when modelisgigtiwork.

The relaxation oscillator does not possess the simple symmkthe repressila-
tor, and thus the delay-dependance is much more interestirigct, when delaying
the relaxation oscillator, the stability of the limit cycidtractor is either increased
or decreased, depending on which pathway is delayed. Tetibégins to hint at the
complexity that emerges when investigating large regtyatetworks, and further
underscores the need for a computationally efficient metifoahalysis, whereby
individual pathways can be easily studied in isolation.

Figure 2.13 shows a histogram of the relaxation oscillatatesspace projected

'[A1=5 s, '[B1=5S '[A1=5 s, '[B1=2058 '[A1=205 s, '[B1=5S
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Figure 2.13 Histograms across the projected phase space at (left) thenabdelay con-
figuration, (center) when gene B is delayed, and (right) wieme A is delayed, along with
the autocorrelation function ¢k(t) at that parameterization. The histogram colormap is log-
arithmic in scale. While the phase space histogram showdétay-dependancy clearly, the
autocorrelation functions provide no insight at all.
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2.6 Analysis: Relaxation oscillator

into the (PBs x Pc) plane. Introducing a delay onto the gene A mRNA transcript de
creases the stability of the oscillator, while a delay onegBrincreases the stabil-
ity. This is consistent with the separation of timescalesagyics at work in this
hysteresis-based oscillator, whereby delaying gene Bd®the oscillators slow re-
pression pathway, keeping the fast auto-activation pathwaéouched.

Unfortunately, the autocorrelation peaks that summarikedstability improve-
ment of the repressilator so well say little or nothing h&iee reason for this is not
clear, but if we permit speculation, it seems to relate tadinection of the noise with
respect to the limit cycle. For the repressilator, the noéskiction brought by delays
seems to primarily suppress disturbanaksgthe limit cycle, leading to a reduction
of phase noise. Meanwhile, the delay-induced noise remtudtir the relaxation os-
cillator seems to be primarily perpendicular to the trajectof the limit cycle, and
delays do little to effect the phase noise of the stochastaillations. We empha-
size that this explanation is merely speculation, and nar@deswer is immediately
apparent.

Analyzing the stability of the relaxation oscillator lindycle reveals that even
the simplest networks can have complex delay-dependar@igsqualitative analy-
sis nonetheless revealed the possibility of engineerialilgy by delaying the sec-
ondary helper gene of the network (Gene B).

As we have iterated many times by this point, performing laimgt more than a
crude local analysis of a discrete, stochastic model of tyenegulatory network is
prohibitively slow. For this reason, we now (finally) turnD®E analysis of simpler,
deterministic models, where we develop more precise mesairdelay-dependent
stability using a wide range of results from numerical asalyand the theory of
dynamical systems.
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3. DDE Stability Analysis

In this chapter, we outline methods from the stability aselyof delay-differential
equations (DDESs), and demonstrate their applicabilityuoldoengineering inquiry.
The analysis presented here is well grounded in the theodyofmical systems,
and if offers a method for quantifying the delay-dependanfdibe attractor stability
qualitatively ‘observed’ during the previous stochastialgsis.

First, we study the stability of fixed points of systems of D) Bpplying linear
stability analysis and principles from numerical analysig control theory. Next, we
study the more complicated stability of limit cycles of st of DDESs, where our
approach is based on Floquet theory and methods from nuatharialysis for bound-
ary value problems (BVPs). In each section we first reviewthie®retical founda-
tions of the analysis before presenting its applicationidéetgineering. This stability
analysis of DDE models provides a succinct summary of hoaydetan be used to
engineer stable genetic oscillators.

3.1 Delay-differential equations

Often genetic regulatory networks are modeled as a systediffefential equa-
tions, where species assume positive, continuous comtienis, and interact instan-
taneously and deterministically in continuous time, imagtinvariant fashion. Math-
ematically speaking, such models simply describe the imaaetwork as an initial
value problem (IVP):

dx(t)
. = ) (3.1)

x(0) = xXo€RM, (3.2)

wherex is the vector oh species concentrations, axglis the initial concentrations.
In reality the concentrations are positive, and R"!, but we will considex € R",
and consistent models will naturally confine the system éqaibsitive subspace.

As should be clear to the reader at this point, in realitys¢heeaction networks
very often contain delays. Such systems are more accunatadeled through a de-
pendance upon a series of historical values, forming thevioig DDE:

d);—(tt) f(X(t),x(t —11),...,X(t — Tm)), (3.3)

Xt(s) = (p(S)ECO([—T,O],Rn), ) (3.4)

wherex;(s) := Xx(t +s), s € [—1,0] will be explained below. This is a special case
of what is more generally known as a functional differenéiguation (FDE), where
the right hand side can potentially involve functionalgy(entegrals) operating on
historic values over some distributed interval of time (ppased to discrete sample
times). This more general case need not be considered hé&goas not occur in our
regulatory network systems. See [Hale and Lunel, 1993] était$.

There are many fundamental differences between ODEs andsPdbid in spite
of their superficial similarity, the introduction of eveniagie delay introduces sev-
eral complications. The most significant difference, witidegpread consequences,
is that the state of the system at timis no longer completely defined by the state
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Chapter 3. DDE Stability Analysis

of the system at that time(t) € R"), but rather by the historical values of the state
on the entire intervalk — 7,t], here denoted; (s). This continuous vector-valudus-
tory functiondefined over the entire interval is in fact the infinite-direiemal state
for the system. This in turn complicates the initial coratis, which then must be
defined as a history function. For an excellent overviewatiéa towards pointing out
computational challenges, see [Bellen and Zennaro, 2003].

To speak in less general terms, in physical situations thetion f is widely
separable, owing to the fact that direct interactions betwgifferent historical states
constitute a physical impossibility. This effectively mésts our study to formulations
of the following type:

d);—(tt) = fo(x(t))+i_§lfi(x(t—ri)), (3.5)
xt) = @t), tel-1,0], (3.6)

where fo might model species decay, aridmight model different transcriptional
regulation pathways, while all map froRI' — R", as with f. This separated formu-
lation does not in itself admit any novel methods of analyisig can be useful for
developing intuition.

3.2 Stability of fixed points

Here we present three methods for analyzing the stabilitiixetl points in delay-
differential equations. First, we present a restrictedlieik@pproach with limited
(but nonetheless some) applicability. Second, we presganaral numerical method
based on well understood approximations. These two metiadargely borrowed
from [Jarlebring, 2008], a recent PhD thesis that survegsstibject of numerical
methods for linear DDE stability well. The methods are thpplied to the Gardner
toggle switch model to study the delay-dependent stalifithe DDE model. Model
reduction techniques for studying fixed points of DDE modelgenetic regulatory
networks as presented in [Chen and Aihara, 2002a] are ahtigee due to their
severely restricted applicability.

Linearization

Fixed points in delayed systems can be derived in the samaanas for ordinary
differential equations. Takiné% = 0 andx(t) = x(t — 1;) = x*, we solve for the
zeros of the following equation:

0 = f(xX*x,....,x%). 3.7)

Because we are generally studying multi-stable systerase thill typically be sev-
eral fixed points. It can be noted that the Gardner togglecbvekhibits symmetries
that result in two stable fixed points (and one unstable fixaidtp with identical
stability and delay-sensitivity. But in general, the prdeee that follows must be re-
peated at each fixed point that one wishes to study.

In order to study stability, we then linearize (3.5) over therent and delayed
states, at the chosen fixed point, to obtain:

d’;_(tt) - on(t)+i;AiX(t—Ti)a (3.8)
- 0fi(x)
a = 20 » (3.9)
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3.2 Stability of fixed points

Here fi and x are all vector valued, and so the matriegsconstitute the typical
Jacobian matrices.

Explicit approach

In this section, we offer an explicit approach for systemkngfar DDESs as presented
in (3.8), but the applicability is limited to systems witheodelay. These types of
systems are in fact rather common in control and other desi@and for a limited
subset of these problems, explicit expressions for theneidees have been derived.
The central tool for these results is the Lambert W functtbe, inverse function of
f(W) =we", which is in fact of curiously old origins [Lambert, 1758; [Ey 1779].
To the best of the our knowledge, the relation to delay diffiéial equations was first
made in [Wright, 1948], and it is also discussed in [Hale anddl, 1993]. The review
by [Corlesset al, 1996] can be seen as ushering in its modern era of applicatio
The Lambert W function arises when considering solutionthéocharacteristic
equation of linear DDE problems as in (3.8), with one delagependancy:

O~ aoxt) + At 1), (3.10)

xt) = o), tel[-T1,0]. (3.11)

The characteristic equation can be derived through an améahe solution type
X(t) = xoe™, from which we obtain the transcendental characteristiagon:

0 = det(—sl+Ag+AEe ™) (3.12)

The roots of this function are infinite, owing to its transdental nature, and in agree-
ment the infinite dimensional structure of DDEs. The roots lba expressed using
the Lambert W function, according to the following theoreharfebring and Damm,
2007]:

THEOREM3.2.1
If Ag andA; are simultaneously triangularizable (withg( A1) commuting being a
sufficient special case), then

o) = Ua(%\/\,{((AlreA"r)Jer) (3.13)

k
O

HereW denotes théth branch of th&V function. In practice, the branches of thg
function are evaluated efficiently to machine accuracyaislalley’s method [Hilde-
brand, 1987], as discussed in [Corlegsal, 1996]. The requirement th&g and Ay

be simultaneously triangularizable is rather constrgintvut fortunately some sys-
tems do exhibit this property, by virtue of commuting. In duiwlogical context, if
the instantaneous dependamgeonly contains decay terms with a symmetric decay
rate across chemical specidg & Bl,), then @g, A;) certainly commute.

It is worth noting that in the case whefg andA; are scalar, we obtain a scalar
delay-differential equation, and the result presentedhedrem 3.2.1 is well known.
The correct generalization to systems of equations canyereoéntly, with the work
of Jarlebring.

Some properties of thé/ function operating on matrices will now be briefly
discussed. We note that the Lambafttfunction operates block-wise on matrices in
Jordan normal form, where different branches can be aatdssdifferent blocks:

W(J) = diag(Wh; (In (A1), - - s Wy (I (Am)))- (3.14)
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Chapter 3. DDE Stability Analysis

By also noting the permissible transformathf(A) = SW.(J)S%, we know enough

to analyze the spectrum of basic systems where all eigegwalte simple. For sys-
tems possessing Jordan blocks of dimension greater tharaddigional techniques
presented in [Jarlebring and Damm, 2007] are needed.

Numerical approach

The numerical approach is not limited to only one delay teang offers a general
approach that can be validated against the explicit apprfmcingle-delay, simulta-
neously triangularizable problems. For pedagogical soitplwe will however limit
our presentation to systems with a single delay. The approaaosists of several
steps, where the linearized system (3.10) is first trargladea partial differential
equation (PDE) formulation, exactly describing the DDE] éimen the spectrum of
the PDE operator are analyzed through Chebyshev speatnaidéecretization.
Linear delay differential equations can be though of asrabstCauchy trans-
port problems with non-local boundary conditions [Hale andel, 1993; Jarlebring,
2008]. By introducing a dummy variablé@ to describe amemory dimensioin a
clever way, the system in (3.10) can be described(byd) = x(t + 6) solving:

Jdu Jdu

5 - o (3.15)
a”(gtéo) Aou(t,0) + Agu(t, — 1), (3.16)
u0,8) = @), B6¢l[-T1,0, (3.17)

where (3.16) is the boundary value mimicking (3.10), and{Bis the initial condi-
tion. Note that this formulation is consistent even for eeetalued problems(> 1).
This linear PDE formulation is also infinite-dimensionaidat is rigorously identical
to the linearized problem studied in (3.10). This meansueatan study the stability
of (3.15), and it will correspond to the stability propestief the DDE, linearized at
the fixed point of interest.

By introducing.<Z as the differentiation operator th (3.15) becomes

0
Eu(t,e) =/u(t,0), (3.18)

and we can now formulate a tractable approximation of the tilynamics by dis-
cretizing the memory dimensiof, with a grid® = {6y, ..., 6y}, and then approxi-
mate the differentiation operater with the differentiation matrixdy, which will be
especially constructed for the task. The history functian lse sampled, and the solu-
tion elementsi (t) ~ u(t, 8) = x(t + &) (still vector valued) represents the solution
at the(N + 1) gridpoints in©:

%UN(t) = ANUN(t), (319)

un(©) = [@(60)"....,0(6n)"] (3.20)

This is a finite-dimensional linear system of ordinary diffietial equations, approx-
imating the infinite-dimensional PDE, brought about by dBszation in0, and we
can now readily access the approximate spectral propeftibe operator by an-
alyzing Ay, and thereby grasp the stability of the system evolvingriretiwhich is
precisely our interest.
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3.2 Stability of fixed points

The discretization of the operator is a somewhat intricaggten A crude ap-
proach would involve selecting a uniform gréd, and approximate the differenti-
ation using a (forward Euler) finite difference [Bellen andadét, 2000]. This re-
sults in the classic differentiation matrix, with the boang condition %u“(t) =
AUl (t) + AUl (t) absorbed into the matrix:

Ay — DN ® g eRn(N-}-l)Xn(N‘i‘l) (3.21)
A1 0---0Ag
-1 1
Dn = % e RNx(N+1) (3.22)
-1 1

whereh = 1/N is the uniform grid spacing, and the Kronecker product desran
an identity matrix of the same dimension as the originalesyst), keeping our
derivation relevant for higher dimensional systems.

This crude finite difference approach is in practice verydettand a much better
approach involves discretizing the memory dimensfowith non-uniform Cheby-
shev nodes, and using a Chebyshev differentiation matmplace of Euler forward
differentiation [Bredeet al, 2005]. The theory of spectral differentiation will not be
reviewed here, see [Trefethen, 2000] for details. In pcactive select a non-uniform
discretization grid® = {coqj17/N) ’j\l:O € [—1,1] (which is rescaled below), and then
constructing the nominal Chebyshev differentiation mxalri, ¢ RN+1x(N+1) as:

(DnJoo = AL
(Dnww = — 2L
(3.23)
(DN)II - 2(1_79|Qi2)7 ] = 1, ,N — :I.7
_i+ L
(DN)H = ((;:;Eel];)ej)> IvJ:07 7N 17 I#J
where
2, i=1N
G = { ’ o (3.24)
1, otherwise.

This nominal Chebyshev differentiation matrix is then sf@anmed to the relevant
interval asDy = — 2Dy, which places the interval oir-1/2,7/2], but since we are
ultimately interested only in the stability properties bétoperator here, and not in
simulation, we do not need to shift the interval. The mult@iion by —1 assure
agreement with the sequential order of the solution veatbgreud (t) = u(t, ) =
u(t,—1) = x(t — 7) andul(t) = x(t). The boundary condition is again imposed by
replacing the last row of the matrix by the boundary conditid/e thus achieve our
operator approximatioAy (in matlab syntax, enumerating from 1), as:

2R . .
AN: —?DN(1N71N+1)®In QR”(N+1>><”(N+1) (325)
A;0---0Ag
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Chapter 3. DDE Stability Analysis

We can now study the eigenvalues of (3.25) as an approximetfithe differential
operatore/ with so-called “spectral accuracy”. Loosely speaking,céa accuracy
implies that if the solutioru has p— 1 continuous derivatives ih?(R) for some
p > 1, then the convergence N~ (P+1)), and ifu is analytic then the convergence
is O(cN), wherec € (0,1). Again, see [Trefethen, 2000] and the references therein
for details. This rapid convergence allows us to analyzesthbility of even large
networks in a computationally tractable manner. Thus, theipusly derived explicit
spectrum of a limited class of linear systems of DDEs is Usefa benchmark for the
numerical method by comparison, but the numerical methbdoiadly preferable.

3.3 Analysis: Toggle switch

We will now apply both the explicit and numerical approactestudy the stability
of the fixed points of the Gardner toggle switch [Gardeéal, 2000] as the delay
parameters are varied. The behavior of the toggle switchbeannderstood to fol-
low the following reduced (in the sense that we do not modeNARnd protein

separately) model, with decay, transcriptional reguigtand promoter leakiness:

Xm(t) - ag

S = B+ T (3.26)
dx(t) o
T = _BXZ(t)+m+GO7 (327)

wheref3 =log(2)/600,a; = 10, ap = 0.01. Here we aggregate the many transcrip-
tional and translational delays from the stochastic modgts single delay terms.
The system has two stable fixed points (and one unstablegipdhitive quadrant,
and we will focus out attention on the stable fixed points. Bughe symmetry of
the model, we need only study the stability of one of the twa, the behavior of the
other equilibrium point will be transposed but identicale ¥olve for the fixed points
X* using a symbolic solver and obtain the linearized system:

Here the valuesr,, and a; come from linearization at the fixed point, and are ex-
changed to study the other equilibrium. For the first eqrilitn, wherex; is “high”
andx; is “low”, an, = —0.1225 anda; = —5.6783- 10 8.

For this system, the matric¢fo, A1) clearly commute, and so the explicit result
presented in Theorem 3.2.1 becomes applicable. Below ur&ig.1 we present a
root locus plot of the first six eigenvalues of the systemntbusing the branches
Wp, W_1, andW; of the W-function, studied as we vary the delay parameterhe
spectrum from Theorem 3.2.1 reduces quite nicely for trésesy using the properties
of theW-function presented earlier, and withi( A») as the eigenvalues &f;, we
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3.3 Analysis: Toggle switch

obtain the following union of sets of two eigenvalues pemnbtaof theW-function:

() = Uo(%Wi((AlreA"r)Jer) (3.29)
k
1 T
_ LkJa<?V\4<(A1Teﬁ')—BI> (3.30)
= UWure™) - B Wt B (33D)
k

It can be noted from the plot that the eigenvalues continlyaaisproach the eigen-
values of the non-delayed systemtas- 0. This can also be deduced by evaluating
the limit of (3.31).

We also present the same six eigenvalues calculated ugngutherical method
based on Chebyshev semidiscretization of the reformulBt@d, where we com-
puter the spectrum d&y from (3.25). Our discretization uses a mé&fe= 10 nodes,
and the resulting eigenvalues are for our purposes eslherdientical to the explicit
eigenvalues.

From this root locus plot we can deduce that the principlemiglue, under-
stood to be the eigenvalue with the greatest real portiomjtially robust to delay,
though it eventually moves slowly towards the imaginarysdiie stability bound-
ary) as the delay is increased beyond= 500 seconds. In fact, all of the eigenvalues

15¢

explicit
1r + numerical
O non-delay

i A i

10 10 10° 10 10
T (seconds)

Figure 3.1 A root locus plot showing the movement of the six principlgegivalues as the
delay parameter is varied (above), and the real portion of the same eigeaggilotted versus
the delay parameter, in seconds (below).

31



Chapter 3. DDE Stability Analysis

(even the infinitely many eigenvalues not shown) convergmupe origin ag — .
This agrees with the delay-indifference observed wherystgdhe stochastic toggle
switch model.

In summary, this section provides a method for analyzingdlay-dependence
of the stability of fixed points, and we find that for our togghitch network, the
stability of the operating points are generally indiffaremall but the largest delays,
explaining the behavior of the stochastic model seen eaflies destabilizing effect
of delay can not be considered surprising nor particulattjtmg, but as we shift our
focus to limit cycles and oscillatory genetic networks, @again more complicated
consequences can be suspected.

3.4 Stability of limit cycles

In this section we present the primary result of this thesisethod for analyzing
the delay-dependent stability of oscillators in genetguiatory networks using tools
from the theory of dynamical systems. These oscillatoryosgts can be modeled as
nonlinear systems of delay-differential equations esttmigilimit cycles. The method
of analysis first finds periodic solutions to nonlinear DDEsg a cleverly modified
Newton’s method-type solver, and then constructs a lines integration operator,
linearized at the periodic solution. The stability propstof the operator reveals
the stability properties of the genetic regulatory networklerlying the nonlinear
system of DDEs being studied, and a measure of the oscilaigidity can then be
presented. We apply our analysis to the Elowitz ring odcitlérepressilator) and the
Barkai-Leibler relaxation oscillator, showing how chasge delay topology affect
the stability of the oscillations.

In previous work regarding the stability analysis of limyctes to delay differen-
tial models of genetic regulatory networks, mathematissluanptions necessary to
obtain analytic results have greatly restricted the cldsslevant models. In [Chen
and Aihara, 2002b], less quantitative conclusions are dreagarding the stability
of limit cycles based on the measure of the parameter regianl¢ads to oscilla-
tory behavior. This result uses singular perturbation thend so it furthermore ap-
plies only to relaxation/hysteresis oscillators, exphgjtthe separation of timescales
found there. In our work, we develop a more general quaivigaesult using well-
understood numerical methods to analyze general networks.

Linearizing at a periodic solution

The monodromy operatois a linear time integration operator mapping solutions to
the variational equation from one period to the next, lire=s around the periodic
solution. The theory which underlies this periodic lineation is generally referred
to as Floquet theory, see [Stokes, 1977; Hale and Lunel,]1f@®@3letails. For a
system withm delays, the variational equation is given by,

d
Y =TAOYD+T Zl/\ t—— (3.32)

0%
Notice that for constant solutions (fixed points), this is #ame as the linearization
in (3.8). Floquet theory tells us that the solution to thisteyn of equations has the
separable form

whereAf (t) = ﬂ‘ are periodic linearizations of at the periodic solutiom*(t).
u*

yt) = P(t)e*, (3.33)
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3.4 Stability of limit cycles

whereP(t) is T-periodic, P(t) = P(t+ T), Vt. Then the monodromy operato# :
Co([—+,0],R") — Co([—+,0],R") corresponds to forward integration over the pe-
riod T, and the spectrum is given by

o(#) = o), (3.34)

see [Hale and Lunel, 1993] for details.

The monodromy operator always possessadvial eigenvalue (in this context
also called thecharacteristic (Floquet) multipligrof u; = 1, corresponding to a
perturbation along the periodic solution. By studying tipectrum of characteris-
tic multipliers, we can determine and quantify the stapitif the periodic solution.
For stable limit cycles,

|l-'ll| <1 Vi > 1,

and the smaller the characteristic multipligrs the faster any perturbations away
from the periodic solution along the corresponding eigeafion (; die out. In this
format, we are studying a simple problem of linear stabtligory for a discrete map,
and using this we can deduce the delay-dependent stabjlisgualying the system
under a range of delay parameterizations.

We seek periodic solutiong(t) to our DDE, where the history functions at time
t =0andt =T are identical. At this point it becomes appropriate to ristize time
dimension, such that:=t/T. With this, we seek a periodic solution wheg= x1,
by notation analogous to that which was introduced eantieg CO([t — £,t],R"),
wherex(s) := x(t+ £), s € [-1,0]. We will only derive our results for systems
with a single delay, but the generalization to systems witlitipie (discrete) delays-
dependencies is straight-forward. For notational sinitgligve also assume that<
T, areasonable constraint that is however not necessamsdaled time we obtain a
‘functional’ boundary value problem dre [0, 1], as:

T
5 = TIxOxt-), (3.35)
Xo = Xq, (3.36)
p(x(t),T) = 0. (3.37)

HereT is treated as an unknown parameter (with nonlinear deperegrthat must
be solved for alongside our solution. In (3.37) above we®erbforced to addjphase
constraint introduced to arbitrarily fix a starting point in the peridthe general as-
pects of this approach applied to finding limit cycles in O&th unknown periods
is well outlined in [Parker and Chua, 1989], but as we will ne®e, DDESs present
some complications, resolved primarily in [Engelborgiis/, 2000].

Because the dependance from one point in the solution tdhvan non-trivial
(when the period of the oscillation is not an even multiplehef delay time(s)), no
simple discretization exists, and constructing a competeof points with a closed
dependancy is prohibitively difficult or impossible. Thirsstead of solving for the
point values of a frequently sampled solution, instead thetion is parameterized
as an interpolated solution across a mesh of points. In thd wb[Engelborghs
et al, 2000], which is the basis of the implementation in the DDIEFBDOL toolbox
[Engelborghset al, 2002], the set of piecewise polynomials (splines) are used
parameterize the solution. in order to fully document théhmeology we use in this
work, we will now outline the approach in sufficient detail.

Let N be a collection of meshpoints0ty <t; < ... <t = 1 that partition the
interval [0,1], typically a uniform grid. Set; :=ti;1 —t fori =0,...,L — 1. Let
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Chapter 3. DDE Stability Analysis

T, denote the set of all (vector-valued) polynomials of degrateexceedingn. We
will approximate the solution to (3.35) by an element frore tbllowing space of
piecewise polynomials:

Sn(M) :=={ueC([0,T],R") : Ul 4, € Ton,i =0,...,L—1}. (3.38)

In each intervalt;, ti, 1] we then have a vector-valued polynomial of degreeepre-
sented at theepresentation pointwithin the interval:
. i
ti+%.:ti+ahi,I:l,...,m—l, (3.39)
These points are a further refined uniform grid, and it is @nghid of points that we

will obtain our solution. We can then formulate the integietl solutionu(t) with
unknownsu(t;, ; ) as:

m

Ut i 3 U, R0, CE e (3.40)

whereR, (t) are theLagrange polynomials

moot—fyr
|_| j=0,....m (3.41)
r= Or;éjtlJrr{1 t'+—

Thus we have a degree-polynomial on each interval, acrogsintervals, inn di-
mensions, and so difBy(M)) = nx (mx L+ 1) (note that interval endpoints of the
piecewise polynomials are shared), and Sy(I1) is continuous but not necessar-
ily continuously differentiable (at the mesh points). Whast continuous, either a
left-hand or right-hand derivative can be arbitrarily olesand the effect upon the
solution is insignificant.

The solution parameterized in (3.40) can then be inserted (135), and the
Lagrange polynomials differentiated and inserted on thehkend side to obtain the
collocation equationgor each interval, which can be solved to evaluate the soiuti
to (3.35) correctly at akkollocation points qer interval:

dL:j(tC) = Tf(u(C),u(C—%))a Whenc_%zo (3-42)
U = u, (3.43)
auT) — o0 (3.44)

The collocation points in each intervalt;,ti, 1] can be chosen either uniformly, thus
replicating therepresentation pointén (3.39), or as the roots of Gauss-Legendre
polynomials. Where a uniform (or any other general mesh)laveesult in &'(h™)
convergence, Gauss-Legendre collocation points resditihf*1) convergence, and
are implemented in the DDE BIFTOOL software package [Ernyelhset al, 2000].
The collocation points;; are then:

G =t+ah, =1...,m (3.45)
O0<g<<---<ep<l (3.46)
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3.4 Stability of limit cycles

wherec, are the zeros to the Gauss-Legendre polynomials, on théntmival. We
thus obtain one instance of (3.42) for eachO,...,L— 1, =1, ..., m. If we write

. { G| — T , whenc— £ >0, (3.47)

Gj—++1 , whenc—{ <0,

and letk be the integer such that< G| < tx, 1, then the collocation equations (3.42)
take the form:

JP| i) =Tf i iRj(cir), iBG@&)) |, Vil 3.48
J; i+ (C|) <J;u+m J(C|) j;uk+mH(j(C|)> | ( )

This, for all intents and purposes, is merely a system ofineat algebraic equations,
with unknownsuw '=u(t, ;) andT, and we can now apply Newton’s method
to solve for these unknowns. We note that this problem pesadx (mx L+ 1)
equations fom x (mx L+ 1)+ 1 unknowns, and the phase constraint provides the
last equation.

The phase constraint

A phase condition is required in order to remove translaionvariancy and fix
a starting point in the period, for otherwise an unconsaaiset of phase shifted
periodic solutions would all satisfy our problem. Typigathe classical integral phase
condition is applied,

/lu(o)(s)<u(°)(s) —u(")(s)>ds: 0, (3.49)
0

whereu(9)(s) is the initial solution at the start of the Newton iteratiamdu(¥) (s) is
the current estimate. Notice that this phase constraipents the phase of the initial
estimate.

Constructing the Newton solver

To solve (3.48) for the periodic solution, we reformulate dguation for each collo-
cation pointc; | as:

m m m
Hii(u,T) % |+J C|| —Tf %UH%F’”‘(QJ),%uk+%H<j((~:i7|) =0.
j = =
(3.50)
Note that dinfH;|) = dim(u) = n, the size of the system of DDEs. Performing a
Taylor expansion for eachi,|) around an estimate!"), we construct our Newton

solver by identifying the linear error estimatéu(), AT(V)), which can then be
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Chapter 3. DDE Stability Analysis

solved for in a linear setting, and an update scheme applied:

0 = Hi(uT) (3.51)
~ Hiy (U, TV)+ (3.52)
[DUMHU(u("),T("))Au(") + [ Dy Hiy (U, TW)ATV)
m v)
—Hi.I(U(V),T(V)) — ZPin(CII)AUH%*' (3.53)

This is then a system of linear equations over the error estisgAu, AT), with AS’)
andA(lV) being theu-iteration Jacobians tb, evaluated at the collocation poiny:

AY) = Z—;(E,n) AV %(E,n) (3.54)

Now the typical Newton method for systems of equations caafdpied. To illus-
trate, we present the structure of a fictitious system of #guswithm = 2 below:

_ - (V) _ -

Aug Hoo(u"), TV)
Au0+% HO.l(U(v),T(v>)
AV | bW A H“’(u(:;’TE:))
(V)T ‘ d(V)] Aul*% =~ | Hua 7)1 (3.55)
AU, Hg.o(u("),T(‘”)
_AT u L 0 u
N

o)

whereA is a sparse matrix with band-like structures (see [Enggtmet al, 2000]),
b is a vector incorporating th€-dependance, andandd are derived by linearizing
the phase constraint (3.49), a process that is not shown here

This system can then be solved f8f*) (via e.g. LU decomposition to avoid
matrix inversion), and the solution can be updated untiveagence as:

uvtl = u 4 au™ (3.56)

TV — TV ATV, (3.57)

Obtaining an initial estimate

We now wish to apply this method at many different delay pai@mvalues, to find
the limit cycle of the system at those parameter values, avitability analysis as our
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3.4 Stability of limit cycles

goal. But in order to run our Newton iterator, a descentahiistimate is required for
convergence. This is an infamous property of the Newton atgtand it is overcome
by obtaining an initial estimate of the limit cycle from a nerital simulation. By
applying a numerical solver (such age23 or ddesd in matlab) roughly until con-
vergence (“for a long while”), and extracting one periodlad solution translated to
a proper mesh grifil and set of representation poirtts i (see (3.38) and (3.39)),

we are able to supply a sufficiently close initial estimalbat in practice allows our
Newton solver to converge. If convergence is not achievieidiex requirements can
be made for the DDE numerical solver.

Once we have obtained a periodic solution at a nominal setlafy¢parameters,
we have successfully entered the ‘solution space’, andiibrisinal solution can be
used as an initial estimate to re-run the Newton solver ab#oyeset of parameters,
and here convergence is typically excellent. In this fashame can traverse the pa-
rameter space to obtain periodic solutions to nearby pasamalues rapidly, without
having to re-run a DDE numerical solver.

The time integration operator

All of the work so far has been for the purposefioiding the limit cycle. With the
periodic solution in handy*(t) with period T*, our attention turns to studying the
stability properties of the time integration operator éggbto the system over a period
T, also called thenonodromy operator

Themonodromy matrix Mapproximating this operator is the matrix correspond-
ing to a numerical integration of (3.32) spannirgf, 1, and extracting the mapping
of the elements in—+,0] to [1— £,1]. This matrix can be derived largely from the
linear system in (3.55), where tiiematrix is essentially this discretized, linearized
operator. An exact mathematical formulation of the monodranatrix is weighed
down in notation, and therefore a detailed formulation isttad. For an implemen-
tation of the methodology, we rely on DDE BIFTOOL.

The eigenvalues of the monodromy matrix approximate thersigues of the
operator, providing a measure of the stability of the pedalution. Thus, we can
derive the dominant non-trivial multiplieu, (recall thatu; = 1), and study its de-
pendance on the delay parameters of the delay-differedigdtion.

Sensitivity analysis

In addition to studying the delay-dependance of the dontinan-trivial multiplier,

to succinctly study the delay-dependance, we will also exarpartial derivative
sensitivities. By calculating the sensitivity of the doii non-trivial multiplier with
respect to delay; as a central difference after a logarithmic transformation

S = —gr (M) (3:59)

S ~ _(Inyuz(r+8i)\2—£i|n\IJz(T—fi)\> (3.59)
e L ()

S =~ 2§ In (“.12('[—&)‘>7 (360)

we obtain a mapping where a positive sensitivity correspdodan increase in sta-
bility, and a negative sensitivity corresponds to a deaebierer is the vector of
delays, and; is a perturbation to delay
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3.5 Analysis: Repressilator

Having now outlined the mathematical methodology, we can twr attention to
the bioengineering inquiry that motivates our efforts. Hovght delays improve the
stability of genetic regulatory oscillators? In terms of aawly derived methodology,
how do the characteristic multipliers of the limit cycle éapl upon delay?

We once again begin our oscillator analysis with the Elowefressilator, which
was introduced in the previous chapter. The repressilatarring oscillator consist-
ing of three proteins repressing each other, and is commiontgulated in a six-
dimensional ODE, with proteins and mRNA:

%1« _ 0’0+1++pc(t)2_m’* (3.61)
dd_rftb — orﬁ—%B(t)z—mC
‘L_p;\ = —B(palt) ~ma(t))
I B(pelt) me(t)
I B(pet) - o).

The reduced ODE formulation of the repressilator is a cagmint of why non-
delayed models do not accurately describe the system dgeaittie reduced ODE
model (wheredm /dt ~ 0, and parametens, ao, 3 are appropriately converted),

dpa

a
at = —BpA(t)—Fao—FrPC(t)z (362)
dpg a
gt —Bps(t) +ao+ m
dpe a
ot —ch(t)+ao+m,

in fact leads to a stable equilibrium fixed point, and no d¢atdns at all. For param-
eter values, see the ODE model in [Elowitz and Leibler, 2000 more detailed
six-dimensional model is used by the authors to maintainiayda the interactions
between proteins, via the intermediate mMRNAs. This furthetivates the delay dif-
ferential formulation, which is diagramed below in Figur&:3

dp/_\ o a

W = —BpA(t)+ao+m (363)
dps a

= - _ t - - @@

dt Bpalt) + ot T

dpc a

ot —BPC(t)+ao+—1+ e — T2

While the non-delayed system is dominated by a stable fixad,pohenta, g, Tc =~
21 seconds, a Hopf bifurcation occurs, and for delays lottgar 21 seconds we ob-
tain a stable limit cycle surrounding an unstable fixed pdihis alone is a notewor-
thy realization, seeing as the classic repressilator ¢ger@nly marginally beyond
the bifurcation point, at about 27 seconds of delay.
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Figure 3.2 A schematic of the Elowitz ring oscillator delay model, ahé nominal limit
cycle. Three promoter sites produce three different pneteand are negatively regulated (re-
pressed) in a ‘ring’. Transcription and translation are gled as one delay.

The extended delays we choose to work with are- 1, = 13 = 127 seconds.
In contrast to the more detailed stochastic formulatiome tige delay from promoter
activity to protein is summarized in one term, and so we ardating a 100 second
transcriptional delay, ahead of a 5 second period to trébestie ribosome binding
site (RBS), and 22 seconds to translate a generic 1000 bp nmiRIgfotein, at 45
bp/s [Phillipset al, 2008].

How does the stability of the limit cycle depend upon delay@ Two principle
characteristic Floquet multipliers are shown below, asation of varying one delay
parameter. Due to symmetry, all three delay parameterdycleave the same effect.

We can here confidently conclude that increasing delays pteard more intel-
ligently, all) of the transcriptional delays in the repiiégsr increases the stability
of the oscillator, making it less susceptible to pertudiraifrom the oscillator limit
cycle. This is a significant theoretical result, seeing asitbminal characterization of
the repressilator only offers a barely functioning ostilfavhen studiedhn vivo. This
result also agrees with the delay-dependancy of the moedletbistochastic model
of the repressilator regulatory network.

To offer a more concise investigation, we take the sensitivieasure (3.60) at
the nominal parameterization, and see that our senstvidlre symmetrical across
the pathwaysS= (0.003770.003770.00377. For large systems, these sensitivities
evaluated at the nominal case can give a clear summary ofveeday can improve
the stability of the system, at a fraction of the computatlarost required to search

[y

0 50 100 150 200 250 300
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Figure 3.3 The two principle characteristic Floquet multipliers asiadtion of varying one

delay parameter. The first multiplier is constantiat= 1 (dashed), while the second multiplier
U2 (solid) rapidly becomes smaller as we increase the delag the logarithmic scale).
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the delay parameter space. There is no indication that thg-dependence is neces-
sarily monotonically increasing or decreasing (though oonter example has been
found). While a sensitivity analysis by no means paints thmpmlete picture, it can
offer a concise overview for complex networks, evaluatimg delay-dependance of
each pathway at the nominal parameterization.

3.6 Analysis: Relaxation oscillator

The DDE model of the Barkai-Leibler relaxation oscillatoillwow be examined,
where transcriptional regulation is used for activationg @ hypothetical protein-
protein interaction between proteins A and B is used to fordeeaying protein
C, see [Barkai and Leibler, 2000] for details. The proteiot@in interaction is an
instantaneous reaction, and we choose to investigate delay in the context of
transcription. A diagram of the circuit as well as the norhlimait cycle are shown
in Figure 3.4, and the delay-differential formulation isaji as:

dpa Pa(t —Ta)

ar —Bpa(t) +ao+ am — Ypa(t)pa(t) (3.64)
d t—1

d_FIB = —Bpe(t)+ao+ a% — yPa(t)pa(t) +Bpc(t)

I Bpelt) + ypa)polt).

For parameter values, see [Vilaral, 2002].

Recalling the delay-dependent stability of the stochasti@xation oscillator in
the previous chapter, again we find that increasing the delathe primary self-
activation pathway would decrease the stability, whileréasing the delay on the
other pathway would in fact increase the stability, just &b the stochastic model,
but now we can compute the characteristic multipliers asnatfon of delay, plot-
ted below in Figure 3.5, and obtain a much more quantitativéetstanding. We
can again summarize the stability dependancy at the norparameters with the
sensitivity measuréSa, Sg) = (—0.0694 0.0525. The sensitivity measure, which is

3000 ‘
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Figure 3.4 A schematic of the Barkai-Leibler relaxation oscillatolademodel, and the nom-

inal limit cycle. Note that the protein-protein interactics direct, and plays no part in tran-
scription or translation (which are again modeled as onayjeThe protein C is now shown

in the diagram, but serves as an intermediate species dlerdetay pathway when protein B
represses A.
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10 . —
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Figure 3.5 The two principle characteristic Floquet multipliers asiadtion of varying the
delay parameters for the relaxation oscillator wighabove, andg below. The first multiplier
is in both cases constant gi = 1 (dashed), while the second multipligs (solid), which
quantifies the stability of the limit cycle, is delay-depent] and varies as we move eithar
or 7g from the nominal configuration (whem = 15 = 127 seconds).

significantly faster to calculate, summarizes the delgyeddance well, given that
the dependancies are still monotonic (though opposite) evthis case. The useful-
ness of such local sensitivity measures, along with thetmuresf monotonicity, are

topics open for future study.
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4. Conclusions

By examining the role of delay in both stochastic and deteistic models of ge-
netic regulatory networks, we establish a theory for detmsgivity and tuning that
proposes a new paradigm for bioengineering. Our analysigsithat delays play a
particularly important role in the dynamics of oscillatargtworks, and delay engi-
neering can be used to considerably improve the stabilityroff cycles in oscillator
models. By applying the methods of sensitivity analysisD@E models developed
here, large regulatory networks (natural or syntheticnfeowide range of biological
inquires can potentially be examined for delay tuning. Thésis also outlines meth-
ods for stochastic model analysis that can be performedlidata the dependancy
at a greater level of detail.

The strong agreement between the stochastic modeling agprderived from
the Chemical Master Equation, and the deterministic amproformulated using
delay-differential equations (DDES), suggests that tHaydeffects observed in this
thesis are valid to the extent that the CME and DDE modelipg@grhes are valid.
But whether or not biology agrees is admittedly another enatt

It is important to emphasize that the results presentedsritigsis are theoretical
in nature, and that at this time these predictions have rer Berified in biology. A
‘wet’ investigation is the obvious next step, and towards goal, an initial investi-
gation is currently being undertaken within the Murray Grau Caltech.
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