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Abstract:
Estimating the effects of interventions in networks is complicated due to interference, such that the outcomes
for one experimental unit may depend on the treatment assignments of other units. Familiar statistical formal-
ism, experimental designs, and analysis methods assume the absence of this interference, and result in biased
estimates of causal effects when it exists. While some assumptions can lead to unbiased estimates, these assump-
tions are generally unrealistic in the context of a network and often amount to assuming away the interference.
In this work, we evaluate methods for designing and analyzing randomized experiments under minimal, re-
alistic assumptions compatible with broad interference, where the aim is to reduce bias and possibly overall
error in estimates of average effects of a global treatment. In design, we consider the ability to perform ran-
dom assignment to treatments that is correlated in the network, such as through graph cluster randomization.
In analysis, we consider incorporating information about the treatment assignment of network neighbors. We
prove sufficient conditions for bias reduction through both design and analysis in the presence of potentially
global interference; these conditions also give lower bounds on treatment effects. Through simulations of the
entire process of experimentation in networks, we measure the performance of these methods under varied
network structure and varied social behaviors, finding substantial bias reductions and, despite a bias–variance
tradeoff, error reductions. These improvements are largest for networks with more clustering and data gener-
ating processes with both stronger direct effects of the treatment and stronger interactions between units.
Keywords: causal inference, field experiments, peer effects, spillovers, social contagion, social network analysis,
graph partitioning
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1 Introduction

Many situations and processes of interest to scientists involve individuals interacting with each other, such
that causes of the behavior of one individual are also indirect causes of the behaviors of other individuals; that
is, there are peer effects or social interactions [1]. Likewise, in applied work, the policies considered by decision-
makers often have many of their effects through the interactions of individuals [2]. Examples of such cases are
abundant. In online social networks, the behavior of a single user explicitly and by design affects the experi-
ences of other users in the network. If an experimental treatment changes a user’s behavior, then it is reasonable
to expect that this will have some effect on their friends, a perhaps smaller effect on their friends of friends, and
so on out through the network. In an extreme case, treating one individual could alter the behavior of everyone
in the network.

To see the challenges this introduces, consider what is, in many cases, a primary quantity of interest for
experiments in networks – the average treatment effect (ATE) of applying a treatment to all units compared
with applying a different (control) treatment to all units.1 Let 𝑍 be a vector of length 𝑁 giving each unit’s
treatment assignment, so that 𝑌u�(𝑍 = 𝑧) is the potential outcome of interest for unit 𝑖 when 𝑍 is set to 𝑧. Then
the ATE is a contrast between two such treatment vectors,

𝜏(𝑧1, 𝑧0) = 1
𝑁

∑
u�

𝐸[𝑌u�(𝑍 = 𝑧1) − 𝑌u�(𝑍 = 𝑧0)], (1)

where 𝑁 is the number of units and 𝑧1 and 𝑧0 are two treatment assignments vectors; the prototypical case
has 𝑧1 = 1 and 𝑧0 = 0, the 𝑁-vectors of all ones and of all zeros, such that we would call 𝜏 the global ATE.
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Note that each unit’s potential outcome is a function of the global treatment assignment vector 𝑍, not just
its own treatment 𝑍u�.2 Additional assumptions will thus be required for 𝜏 to be identifiable.3 The standard
approach is to assume that each unit’s response is not affected by the treatment of any other units. Versions of
this assumption are sometimes called the stable unit treatment value assumption (SUTVA) [12], a no interference [13]
assumption, or an individualistic treatment response (ITR) [14] assumption. Combined with random assignment
to treatment, this suffices to identify 𝜏. However, for many processes and situations of interest the units are
interacting, and SUTVA becomes implausible [7, 15].

Rather than substituting other strong assumptions about interference that may result in point identifying 𝜏,
this paper considers how we can reduce bias in estimates of 𝜏 through both the choice of experimental design
and analysis when interactions among units occur along an observed network.4 The design of the experiment
dictates how each vertex in the network (i.e., unit) is assigned to a condition, and the analysis says how the
observed responses are combined into estimates of causal quantities of interest. We study these methods by
formalizing the process of experimentation in networks and proving sufficient conditions for bias reduction
through design and analysis. These sufficient conditions for bias reduction are also sufficient for bounding the
ATE. We augment these theoretical results with extensive simulations.

We do not consider all possible designs and analysis, but limit this work to some relatively general methods
for each. We consider experimental designs that assign clusters of vertices to the same treatment; this is graph
cluster randomization [16]. Since the counterfactual situations of interest involve all vertices being in the same
condition, the intuition is that assigning a vertex and vertices near it in the network into the same condition,
the vertex is “closer” to the counterfactual situation of interest.5 For analysis methods, we consider methods
that define effective treatments such that only units that are effectively in global treatment or global control are
used to estimate the ATE. For example, an estimator for the ATE might only compare units in treatment that are
surrounded by units in treatment with units in control that are surrounded by units in control. The intuition is
that a unit that meets one of these conditions is again “closer” to the counterfactual situation of interest.

The rest of the paper is structured as follows. We briefly review some related work on experiments in net-
works. Section 2 presents a model of the process of experimentation in networks, including initialization of the
network, treatment assignment, outcome generation, and analysis. This formalization allows us to develop the-
orems giving sufficient conditions for bias reduction. To develop further understanding of the magnitude of the
bias and error reduction in practice, Section 3 presents simulations using networks generated from small-world
models and then degree-corrected blockmodels. While our theoretical sufficient conditions for bias reduction
are somewhat restrictive, the simulations include data generating processes that do not meet these sufficient
conditions yet still show substantial bias and error reductions, demonstrating that our alternative design and
analysis approaches remain useful far outside the range of the theorems.

We find that graph cluster is capable of dramatically reducing bias compared to independent assignment
without adding “too much” variance. The benefits of graph cluster randomization are larger when the network
has more local clustering and when social interactions are strong. If social interactions are weak or the network
has little local clustering, then the benefits of the more complex graph-clustered design are reduced. Finally, we
found larger bias and error reductions through design than analysis: analysis strategies using neighborhood-
based definitions of effective treatments do further reduce bias, but often at a substantial cost to precision such
that the simple estimators were preferable in terms of error. No combination of design and analysis is expected
to work well across very different situations, but these general insights from simulation can be a guide to prac-
tical real-world experimentation in the presence of peer effects.

1.1 Related work

Much of the literature on interference between units focuses on situations where there are multiple independent
groups, such that there are interactions within, but not between, groups, (e.g., [6–8, 17]). Some more recent work
has studied interference when the analyst may only observe a single, connected network [9, 14–16, 18–22], where
this between-groups independence structure cannot be assumed. Walker and Muchnik [23] review some of this
work, including a previous version of this paper.

Two features are common to much of this growing body of work on interference in networks. First, most
work has focused on assuming restrictions on the extent of interference (e.g., vertices are only affected by the
number of neighbors treated) and then deriving results for designs and estimators motivated by these same
assumptions. Aronow and Samii [15] give unbiased estimators for ATEs under these assumptions and derive
variance estimators. Also using these assumptions, Ugander et al. [16] show that graph cluster randomization
puts more vertices in the conditions required for these estimators, such that the variance of these estimators is
bounded for certain types of networks, such that the asymptotic variance is 𝑂(1/𝑁). But, as noted by Manski
[14] and as we discuss in Section 2.3.2 below, the very processes expected to produce interference also make
these assumptions implausible. There are some exceptions. Like the present work, Choi [21] uses monotonicity
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assumptions but allows for global interference in the context of inference for attributable effects. Aronow [18]
and Athey et al. [22] develop tests for spillovers that are valid under arbitrary global interference. Similar to
the present work, the setup in Toulis and Kao [9] presents bias–variance tradeoffs, as they study how network
structure constrains how “manipulable” the number of treated neighbors is.

Second, much of the related work has focused on detecting or estimating effects of peer assignments on ego
outcomes; that is, estimating the magnitude of local interference (i.e., exogenous peer effects, indirect effects,
spillovers) rather than estimating a global ATE. Again, one exception is Choi [21], which considers a contrast
between global control (or treatment) and whatever treatment vector was actually observed.

The present work explicitly considers realistic data generating processes that violate these restrictive as-
sumptions. That is, in contrast to prior work, we evaluate design and analysis strategies in the absence of as-
sumptions that deliver particular desirable properties (e.g., unbiasedness, asymptotic consistency). Instead, we
settle for reducing the bias and error of our inevitably biased estimators.

2 Model of experiments in networks

We consider experimentation in networks as consisting of four phases: (i) initialization, (ii) treatment assignment,
(iii) outcome generation, and (iv) estimation. A single run through these phases corresponds to a single instance of
the experimental process. Treatment assignment embodies the experimental design, and the estimation phase
embodies the analysis of the network experiment. These same phases, shown in Figure 1, are implemented in
our simulations in which we instantiate this process many times.

Figure 1 Model of the network experimentation process, consisting of (i) initialization, which generates the graph and
vertex characteristics, (ii) design, which determines the randomization scheme, (iii) outcome generation, which observes or
simulates behavior, and (iv) analysis, which constructs an estimator. We examine the bias and variance of treatment effect
estimators under different design and analysis methods for varied initialization and outcome generation processes.

2.1 Initialization

Initialization is everything that occurs prior to the experiment. This includes network formation and the pro-
cesses that produce vertex characteristics and prior behaviors. In some cases, we may regard this initialization
process as random, and so wish to understand design and analysis decisions averaged over instances of this
process; for example, we may wish to average over a distribution of networks that corresponds to a particular
network formation model. In the simulations later in this paper, we generate networks from small-world mod-
els [24] and degree-corrected blockmodels [25]. In other cases, we may regard the outcome of this process as
fixed; for example, we may be working with a particular network and vertices with particular characteristics,
which we wish to condition on in planning our design and analysis.

When initialization is complete, we have a particular network 𝐺 = (𝑉, 𝐸) with adjacency matrix 𝐴.6 In
addition to producing a graph, the initialization process could also produce a collection of vertex characteristics
𝑋 that may or may not relate to the structure of the graph, but may play a role in outcome generation.

2.2 Design: Treatment assignment

The treatment assignment phase creates a mapping from vertices to treatment conditions. We only consider a
binary treatment here (i.e., an “A/B” test), so the mapping is from vertex to treatment or control. Treatment
assignment normally involves independent assignment of units to treatments, such that one unit’s assignment
is uncorrelated with other units’ assignments.7 In this case, each unit’s treatment is a Bernoulli random variable

𝑍u� ∼ Bernoulli(𝑞)
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with probability of assignment to the treatment 𝑞.
The present work evaluates treatment assignment procedures that produce assignments with network au-

tocorrelation. While many methods could produce such network autocorrelation, we work with graph cluster
randomization, in which the network is partitioned into clusters and those clusters are used to assign treat-
ments. Let the vertices be partitioned into 𝑁u� clusters 𝐶1, 𝐶2, .., 𝐶u�u�

, and define 𝐶(⋅) ∶ {1, .., 𝑁} → {1, .., 𝑁u�} as
mapping vertex indices to cluster indices. Thus 𝐶u� refers to cluster 𝑗 by its index, while 𝐶(𝑖) refers to the cluster
containing vertex 𝑖.

In standard graph cluster randomization, as presented by Ugander et al. [16], treatments are assigned at the
cluster level, where each cluster 𝐶u� is assigned a treatment 𝑊u� ∼ Bernoulli(𝑞). Thus the treatments assigned to
vertices are simply those assigned to their clusters,

𝑍u� = 𝑊u�(u�).

For some estimands and analyses, assigning all vertices in a cluster to the same treatment can make it impos-
sible for some vertices to be observed with, e.g., some particular number of treated peers. This can violate the
standard requirement for causal inference that all units have positive probability of assignment to all condi-
tions being compared positivity, cf. [15]. For this reason, it can be desirable to use an assignment method that
allows for some vertices to be assigned to a different treatment than the rest of its cluster; we describe such a
modification in Appendix A.1.

Graph cluster randomization could be applied to any mapping 𝐶(⋅) of vertices to clusters. This could include
methods developed for community detection [26]. Many global community detection methods, such as mod-
ularity maximization [27], have a resolution limit such that they do not distinguish small clusters [28]; graph
cluster randomization applied using these clusters could then introduce too large an increase in variance for the
resulting bias reduction. Therefore, local clustering methods (e.g., 𝜖-net clustering [16]) may be more appeal-
ing for graph cluster randomization. Observed community membership (e.g., current educational institution)
or geography (e.g., village of residence) could also be used as this mapping.8 In using any graph partitioning
method, the experimenter can choose which network to partition; for example, if multiple networks are ob-
served, the experimenter might choose the network on which they believe the relevant social interactions are
occurring. In practice, graph partitioning methods are often applied to sparsified networks where edges be-
lieved to be irrelevant are removed (i.e., some sparsification is performed on the network). Lastly, independent
random assignment can be considered as clustered random assignment where each vertex is in its own cluster.

2.3 Outcome generation and observation

Given the network (along with vertex characteristics and prior behavior) and treatment assignments, some data
generating process produces the observed outcomes of interest. In the context of social networks, typically
this is the unknown process by which individuals make their decisions. In this work, we consider a variety
of such processes. For our simulations, we use a known process meant to simulate decisions, in which units
respond to others’ prior behaviors. Doing so allows us to understand the performance of varied design and
analysis methods, measured in terms of estimators’ bias and error, under varied (although simple) decision
mechanisms. Before considering these processes themselves, we consider outcomes as a function of treatment
assignment.

2.3.1 Treatment response assumptions

In the following presentation, we use the language of “treatment response” assumptions developed by Manski
[14] to organize our discussion of outcome generation. Consider vertices’ outcomes as determined by a function
from the global treatment assignment 𝑍 ∈ ℤu� and an independent stochastic component 𝑈 ∈ 𝕌u� to an
outcome vector 𝑌 ∈ 𝕐u�:

𝑓 (⋅) ∶ ℤu� × 𝕌u� → 𝕐u� .

We then observe 𝑌 = 𝑓 (𝑍, 𝑈). We can decompose this function into a function for each vertex

𝑓u�(⋅) ∶ ℤu� × 𝕌u� → 𝕐.

We can, as we have done above, continue to write 𝑌u�(𝑍 = 𝑧) to refer to the outcome for vertex 𝑖 that would
be observed under assignment 𝑧; by suppressing dependence on 𝑈, this treats 𝑌u�(⋅) as a (possibly) stochastic
function.



DE GRUYTER Eckles et al.

If vertices’ outcomes are not affected by others’ treatment assignment, then SUTVA is true. Perhaps more
felicitously, Manski [14] calls this assumption individualistic treatment response (ITR). Under ITR we could then
consider vertices as having a function from only their own assignment to their outcome:

𝑓u�(⋅) ∶ ℤ × 𝕌u� → 𝕐.

One way for this assumption to hold is if the vertices do not interact.9 This specification of 𝑓u�(⋅) corresponds to
the assumption that a vertex’s outcome is invariant to changes in other vertices’ assignments. That is, for any
two global assignments 𝑧0, 𝑧1 ∈ ℤu� and any stochastic component 𝑈 ∈ 𝕌u�,

𝑧1,u� = 𝑧0,u� ⇒ 𝑓u�(𝑧1, 𝑈) = 𝑓u�(𝑧0, 𝑈).

ITR is a particular version of the more general notion of constant treatment response (CTR) assumptions [14].
More generally, a CTR assumption involves establishing equivalence classes of treatment vectors by defining a
function 𝑔u�(⋅) ∶ ℤu� → 𝔾u� that maps global treatment vectors to the space 𝔾u� of effective treatments for vertex 𝑖
[14] such that

𝑔u�(𝑧1) = 𝑔u�(𝑧0) ⇒ 𝑓u�(𝑧1, 𝑈) = 𝑓u�(𝑧0, 𝑈)

for any two global assignments 𝑧0, 𝑧1 ∈ ℤu� and any stochastic component 𝑈 ∈ 𝕌u� . Specifying the functions 𝑔u�
is then a general way to specify a CTR assumption. Such assumptions, which specify levels sets of 𝑓u�(⋅), can be
described as constituting an exposure model [15, 16].

Other CTR assumptions have been proposed that allow for some interference. Aronow and Samii [15] simply
posit different restrictions on this function, such as that a vertex’s outcome only depends on its assignment and
its neighbors’ assignments. This neighborhood treatment response (NTR) assumption has that, for any two global
assignments 𝑧0, 𝑧1 ∈ ℤu� and any stochastic component 𝑈 ∈ 𝕌u� ,

𝑧1,u� = 𝑧0,u�and𝑧1,u�(u�) = 𝑧0,u�(u�) ⇒ 𝑓u�(𝑧1, 𝑈) = 𝑓u�(𝑧0, 𝑈),

where 𝛿(𝑖) are the neighbors of vertex 𝑖. Aronow and Samii [15] and Ugander et al. [16] consider further restric-
tions, such as that a vertex’s response only depends on the number of treated neighbors.

2.3.2 Implausibility of tractable treatment response assumptions

How should we select an exposure model? Aronow and Samii [15] suggest that we “must use substantive
judgment to fix a model somewhere between the traditional randomized experiment and arbitrary exposure
models”. However, it is unclear how substantive judgement can directly inform the selection of an exposure
model for experiments in networks – at least when the vast majority of vertices are in a single connected com-
ponent. Interference is often expected because of social interactions (i.e., peer effects) where vertices respond
to their neighbors’ behaviors: in discrete time, the behavior of a vertex at 𝑡 is affected by the behavior of its
neighbors at 𝑡 − 1; if this is the case, then the behavior of a vertex at 𝑡 would also be affected by the behavior of
its neighbors’ neighbors at 𝑡 − 2, and so forth. Such a process will result in violations of the NTR assumption,
and many other assumptions that would make analysis tractable. Manski [14] shows how some, quite specific,
models of simultaneous endogenous choice can produce some restrictions on 𝑓u�(⋅).10 Since many appealing CTR
assumptions are violated by the very theories that motivate the expectation of interference, it is useful to evalu-
ate the performance of available design and analysis methods – including estimators that would be motivated
by these assumptions – under outcome generating processes consistent with these theories. In particular, we
now consider outcome generating processes in which vertices respond to their own treatment and the prior be-
havior of their neighbors. That is, peer behavior fully mediates the effects of the assignments of an ego’s peers
on the ego. This is notably different from Aronow and Samii [15] and Ugander et al. [16], where ego response
is specified in terms of peer assignments without being mediated through peer behavior.11

We consider a dynamical model with discrete time steps in which a vertex’s behavior at time 𝑡, denoted by
the vector 𝑌u�,u�, is a function ℎ of ego treatment assignment and it and its neighbors’ prior behaviors 𝑌u�(u�),u�−1,
such that

ℎu�,u�(⋅) ∶ ℤ × 𝕐u�u�+1 × 𝕌u� → 𝕐,

where 𝑘u� is the degree of vertex 𝑖 and 𝑌⋅,0 is initialized by some prior process. That is, ℎu�,u�(⋅) is the nonparametric
structural equation (NPSE) for 𝑌u�,u�.

Together with the graph 𝐺, the functions ℎu�,u�(⋅) determine the treatment response function 𝑓u�(⋅). Thus, this
outcome generating process implies some CTR assumptions. After the first time step (i.e., at time 1), the effective
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treatment for a vertex, the function 𝑔u�(⋅) considered earlier, maps to the space of the vertex’s treatment. After
the second time step, it maps to the space of the vertex’s treatment and its neighbors treatments. After the third
time step (i.e., at time 3), the effective treatment is no finer than the treatments of all vertices within distance
2. At time step 𝑡, the effective treatment is no finer than the treatments of all vertices within distance 𝑡 − 1.
We see here that under such a dynamic outcome generating process, Manski’s notion of effective treatment,
conceived of to limit the scope of dependence, quickly expands to encompass entire connected components of
the network.12 See Figure 2 for a graphical illustration.

Figure 2 Varieties of interference illustrated in a small social network. (a) Interference under the neighborhood treatment
response (NTR) assumption, where the response of vertex 1 at time t (light orange) depends on the treatments of its
neighbors and itself (dark orange). (b) Interference due to social interactions (i.e., peer effects, social contagion), where the
response of vertex 1 at time t depends on its own treatment u�1 and the responses of its neighbors at time t −1. (c)
Interference caused by social interactions induces long range dependence; for example, the response of vertex 3 at time t
−1 in turn depends on vertex 3’s treatment and the responses of their neighbors at time t −2 (dashed lines and red
objects). Interference under the NTR assumption has no long range dependence, but is much less realistic.

2.3.3 Utility linear-in-means

Many familiar models are included in the above outcome generating process. To make this more concrete,
clarify the relationship to work on graphical games, and for our subsequent simulations, we consider a model
in which a vertex’s behavior is a stochastic function of the mean of neighbors’ prior behaviors, so that behavior
at some new time step 𝑡 is generated as:

𝑌∗
u�,u� = 𝛼 + 𝛽𝑍u� + 𝛾 u�

′
u�u�u�−1

u�u�
+ 𝑈u�,u� (2)

𝑌u�,u� = 𝑎(𝑌∗
u�,u�) (3)

where 𝐴u� is a row of the adjacency matrix and 𝑘u� is the degree of vertex 𝑖. One interesting case, when the
behavior is binary, has 𝑎(𝑥) = 1[𝑥 > 0] and 𝑈u�,u� ∼ 𝒩(0, 1), which is a probit model. Here 𝛼 is the baseline,
where a negative 𝛼 determines the threshold that must be crossed for 𝑌∗

u�,u� to be positive. Setting 𝛽 determines
the strength of the direct effect of the treatment, while 𝛾 is the slope for peer behavior, and therefore determines
the strength of the peer effects. For some small value of 𝑡, this implies CTR assumptions, as described above.

This can be interpreted as a simple noisy best response or best reply model [31], when vertices anticipate neigh-
bors taking the same action in the present round as they did in the previous round. In particular, we can in-
terpret 𝑌∗

u�,u� as the payoff for vertex 𝑖 to adopt behavior 1 at time 𝑡. When 𝛾 > 0, then this is a semi-anonymous
graphical game with strategic complements ([32], Ch. 9). When 𝑎(𝑥) = 𝑥, this is a linear-in-means model, which
is widely studied and used in econometrics, (e.g., [33–36]). This suggests the relevance of theoretical or simu-
lation results with this model.
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2.4 Analysis and estimation

We focus on the ATE (the average treatment effect; 𝜏 in eq. (1)) of global treatment. Compared with direct
and indirect effects separately, this quantity is naturally of interest when considering whether a new treatment
would be beneficial if applied to all units, (cf. [10]).

There are many options available for estimating the ATE. For example, if the relevant network is completely
unknown or if peer effects are not expected, then one might use estimators for experiments without interference,
such as a simple difference-in-means between the outcomes of vertices assigned to treatment and control. To
clarify the sources of error in estimation, we begin with the population analogs of these quantities – i.e., the
associated estimands defined with respect to the observed and unobserved potential outcomes – and return to
the estimators themselves in Section 2.4.3. Consider the simple difference-in-means estimand

𝜏u�
ITR(1, 0) = 𝜇u�

ITR(1) − 𝜇u�
ITR(0) (4)

where the 𝜇u�
ITR are mean outcomes when a vertex is in treatment and control, i.e.,

𝜇u�
ITR(𝑧) = 1

𝑁

u�
∑
u�=1

𝐸u�[𝑌u�|𝑍u� = 𝑧u�].

We index these quantities by both the definition of effective treatments (ITR for “individualistic treatment re-
sponse”, as in Section 2.3.1) and the experimental design 𝑑, since the former determines the conditioning in-
volved and the latter determines the distribution of 𝑍 over which we take expectations. Note that the effective
treatment definition determines the conditioning, but need not match the true effective treatment definition.

When a vertex’s outcome depends on the treatment assignments of others, these estimands need not equal
the quantities of interest. That is, they can suffer from some estimand bias (or model bias), such that 𝜏u�

ITR(1, 0) −
𝜏(1, 0) is non-zero. Each vertex assigned to treatment contributes to this bias through the difference between its
expected outcome when assigned to treatment (given the experimental design) and what would be observed
under global treatment. More generally, for some global treatment vector 𝑧, vertex 𝑖 contributes to the bias of
𝜇u�
ITR(𝑧) through 𝐸u�[𝑌u� − 𝑌u�(𝑍 = 𝑧)|𝑍u� = 𝑧u�]. If the treatment assignment of other vertices do not affect vertex 𝑖’s

behavior much, then this contribution might be quite small. Or this contribution could be more substantial.

2.4.1 Bias reduction through design

We are now equipped to elaborate on the intuition that graph cluster randomization puts vertices in conditions
“closer” to the global treatments of interest and thereby reduces bias in estimates of average treatment effects,
even if a vertex’s outcome depends on the global treatment vector.

Theorem 2.1 Assume we have a linear outcome model for all vertices 𝑖 ∈ 𝑉 that is monotonically increasing in
𝑧; that is, there exists an 𝑁-vector 𝑎 and 𝑁 × 𝑁 matrix 𝐵 with non-negative entries 𝐵u�u� ≥ 0 such that

𝐸u�[𝑌u�(𝑧, 𝑈)] = 𝑎u� + ∑
u�∈u�

𝐵u�u�𝑧u�. (5)

Then for any mapping of vertices to clusters 𝐶(⋅), the absolute bias of 𝜏u�
ITR(1, 0) when the design 𝑑 is graph

cluster randomization is less than or equal to the absolute bias when 𝑑 is independent assignment, with a fixed
treatment probability 𝑝.

Proof. Using the linear model for 𝑌u� and the definition of 𝜏, we have that the true ATE 𝜏 is given by

𝜏(1, 0) = 𝜇(1) − 𝜇(0) = 1
𝑁

u�
∑
u�=1

u�
∑
u�=1

𝐵u�u� (6)

for this outcome model. Under graph cluster randomization,

𝜏gcr
ITR(1, 0) = 1

𝑁

u�
∑
u�=1

u�
∑
u�=1

𝐵u�u�1[𝐶(𝑖) = 𝐶(𝑗)]. (7)

Then under independent assignment,

𝜏 ind
ITR(1, 0) = 1

𝑁

u�
∑
u�=1

𝐵u�u�. (8)
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Because 𝐵u�u� ≥ 0, together this implies that 𝜏(1, 0) − 𝜏gcr
ITR(1, 0) ≤ 𝜏(1, 0) − 𝜏 ind

ITR(1, 0), where monotonicity dictates
that each side of this inequality is positive.

The bias of graph cluster randomization in Theorem 2.1 is small when 𝐶(𝑖) = 𝐶(𝑗) is true for the pairs
(𝑖, 𝑗) with large coefficients 𝐵u�u� and 𝐵u�u�. This comparison allows seeing how, at least in this linear model, the
magnitude of bias reduction from graph cluster randomization depends on the “strength” of the interactions
within clusters. That is, this clarifies the intuition that using clusters formed from more distant vertices will
not generally reduce bias as much as clusters formed from closer vertices, as is the aim of using graph par-
titioning methods such as 𝜖-net partitioning or community detection methods.13It also highlights that when
there are mainly non-zero 𝐵u�u�’s, ceteris paribus large clusters result in more bias reduction; of course, there are
corresponding costs to precision.

To clarify this further, let’s consider the relative bias defined by

𝜏gcr
ITR(1, 0)/𝜏(1, 0) − 1 =

∑u�
u�=1 ∑u�

u�=1 𝐵u�u�1[𝐶(𝑖) = 𝐶(𝑗)]

∑u�
u�=1 ∑u�

u�=1 𝐵u�u�
− 1. (9)

Assume that there are 𝑂(𝑁) clusters of size 𝑂(1) used for the graph cluster randomization.14Under this con-
dition, the numerator has 𝑂(𝑁) terms and the denominator has 𝑂(𝑁2) terms. So unless there is a judicious
choice of clustering, the numerator will be overwhelmed by the denominator and the estimator 𝜏gcr

ITR(1, 0) will
be a dramatic underestimate of the true ATE. Meanwhile it is clear that 𝜏 ind

ITR(1, 0) would be even worse. In order
for meaningful relative bias reduction to occur, the clustering must capture the structure of the dependence
between units specified by the matrix of coefficients 𝐵. Note also that a proof parallel to that of Theorem 2.1,
under the same assumptions, shows that 𝜏gcr

ITR(1, 0) is a lower bound on the ATE.
In Appendix A.2, we derive similar intuitions from an alternative graph cluster randomization that pre-

serves balance between the sizes of the treatment and control group. There graph cluster randomization no
longer always achieves bias reduction for every clustering over independent assignment, but meaningful bias
reduction is again possible and again depends on how the clustering captures 𝐵 in an identical way.

This linear outcome model, which has 𝑁2 parameters, has as special cases some simpler models of interest.
Let 𝑎(𝑥) = 𝑥 in eq. (3). Then for 𝑡 ≥ 1 the quantity 𝐸u�[𝑌u�,u�(𝑧)] is

𝐸u�[𝑌u�,u�(𝑧)] = 𝛼 + 𝛽𝑧u� + 𝛾
𝐴

′

u�𝐸
u�[𝑌u�−1(𝑧)]

𝑘u�
. (10)

The closed form solution for 𝐸u�[𝑌u�(𝑧)] for any 𝑡 ≥ 0 is then given by

𝐸u�[𝑌u�(𝑧)] = (𝛾D−1A)u�𝐸u�[𝑌0] +
u�−1

∑
u�=0

(𝛾D−1A)u�(𝛼 + 𝛽𝑧) (11)

where 𝐷−1 is the diagonal matrix of inverse degrees, 𝐴 is the adjacency matrix, and 𝑌0 is the vector of ini-
tial states. This is a linear outcome model with 𝑎u� = 𝛼(1 − 𝛾u�)/(1 − 𝛾) + ((𝛾D−1A)u�𝐸u�[𝑌0])u� and 𝐵u�u� =
𝛽 ∑u�−1

u�=0(𝛾D−1A)u�
u�u�.

To be clear, the linearity and monotonicity assumption made in Theorem 2.1 are restrictive assumptions, but
it is important to note that they are sufficient, rather than necessary, conditions for graph cluster randomiza-
tion to reduce bias. The probit utility linear-in-means model introduced in Section 2.3.3 and used for the later
simulations will not meet the conditions of the theorem, yet still shows bias reduction.

2.4.2 Bias reduction through analysis

Definitions of effective treatments other than ITR correspond to different estimands. In particular, we can in-
corporate assumptions about effective treatments into eq. (1). Let

𝜇u�
u�(𝑧) = 1

𝑁

u�
∑
u�=1

𝐸u�[𝑌u�|𝑔u�(𝑍) = 𝑔u�(𝑧)] (12)

be the mean outcome for the global treatment 𝑧 when 𝑔 specifies the effective treatments and 𝑑 is the experi-
mental design. Then we have

𝜏u�
u�(𝑧1, 𝑧0) = 𝜇u�

u�(𝑧1) − 𝜇u�
u�(𝑧0) (13)
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as our revised estimand for the ATE.15 If the effective treatment definition is correct, then this estimand will
also be the global ATE. As with the ITR assumption, we can again describe the estimand bias that occurs when
effective treatments are incorrectly specified. For some global treatment vector 𝑧, vertex 𝑖 contributes to the bias
of 𝜇u�

u�(𝑧) through

𝐸u�[𝑌u� − 𝑌u�(𝑍 = 𝑧)|𝑔u�(𝑍) = 𝑔u�(𝑧)], (14)

where 𝑔u�(⋅) is the potentially incorrect (i.e., too coarse) specification of effective treatments for vertex 𝑖.
Considering two specifications of effective treatments allows us to elaborate on the intuition that using a

finer specification of effective treatments will reduce bias by comparing only vertices that are in conditions
“closer” to the global treatments of interest. For example, the NTR assumption corresponds to finer effective
treatments than the ITR assumption. We can also relax the NTR assumption to a fractional 𝜆-neighborhood
treatment in which a vertex is considered effectively in global treatment if a fraction 𝜆 of its neighbors are
treated (and the same for control) [16].

To show sufficient conditions for bias reduction, we define the following generalization of this relationship
among definitions of effective treatments. Consider functions 𝑔u�(⋅) such that 𝑔u�(𝑍) = 𝑔u�(𝑧) just implies that for
some set of vertices 𝐽u� ∈ 𝑉 we have that ∑u�∈u�u�

1[𝑍u� = 𝑧u�] ≥ 𝑙u� and that 𝑍u� = 𝑧u�. These are conditions such that
any subset of size 𝑙u� of a set of vertices 𝐽u� has treatment assignment matching that in 𝑧, the global treatment
vector of interest. The fractional neighborhood treatment response (FNTR) assumption corresponds to such a
function with 𝐽u� = 𝛿(𝑖) and 𝑙u� = ⌈𝜆𝑘u�⌉, where 𝑘u� is vertex 𝑖’s degree. This has both ITR and NTR as special cases
with 𝜆 = 0 and 𝜆 = 1 respectively.16

Definition 2.2 If we have two such functions 𝑔u�
u� (⋅) and 𝑔u�

u� (⋅) with the same 𝐽u�, and 𝑔u�
u� (𝑧) = 𝑔u�

u� (𝑧′) implies
𝑔u�

u� (𝑧) = 𝑔u�
u� (𝑧′), then we say that 𝑔u�

u� (⋅) is more restrictive than 𝑔u�
u� (⋅).

Theorem 2.3 Let 𝑔u�
u� (⋅) and 𝑔u�

u� (⋅) be functions such that 𝑔u�
u� (⋅) is more restrictive than 𝑔u�

u� (⋅) for every vertex 𝑖, and
let independent random assignment be the experimental design. A sufficient condition for estimand 𝜏 ind

u�u� (1, 0)
to have less than or equal absolute bias than 𝜏 ind

u�u� (1, 0), where these estimands are defined by eq. (13), is that we
have monotonically increasing responses or monotonically decreasing responses for every vertex with respect
to 𝑧.

Proof. Given in Appendix A.3.

As with Theorem 2.1 above, a proof parallel to that of Theorem 2.3 shows that more restrictive functions
𝑔u�

u� (⋅) yield estimands that are also increasingly tight (or at least as tight) lower bounds on the ATE. Note that
the utility linear-in-means model in eq. (2) satisfies this monotonicity condition if the direct effect 𝛽 and peer
effect 𝛾 are both non-negative.

What about the combination of a design using graph cluster randomization with an analysis using these
neighborhood-based estimands? As we show in Appendix A.3, similar arguments apply if 𝑔u�

u� (⋅) and 𝑔u�
u� (⋅)

count matching clusters instead of vertices, but use of the FTNR estimand with graph cluster randomization is
not necessarily bias reducing under monotonic responses without this modification.

2.4.3 Estimators

We now briefly discuss estimators for the estimands considered above. First, we can estimate 𝜏u�
ITR(1, 0) with the

difference in sample means ̂𝜏ITR,S(1, 0) = �̂�ITR,S(1) − �̂�ITR,S(0) where the �̂�ITR,S are simple sample means, i.e.,

�̂�ITR,S(𝑧) = 1
∑u�

u�=1 1[𝑍u� = 𝑧u�]

u�
∑
u�=1

𝑌u�1[𝑍u� = 𝑧u�].

Note that these estimators are again indexed by the effective treatment used (i.e., ITR), but, unlike the esti-
mands, they are not indexed by the design, though the design determines their distribution. We additionally
distinguish these estimators by the weighting used (discussed below), identifying the simple (i.e., unweighted)
means with S. If treatment is randomized, then this estimator will be unbiased for 𝜏u�

ITR(1, 0) under independent
randomization of clusters.17 More generally, there is a natural correspondence between the conditioning on
𝑔u�(𝑍) = 𝑔u�(𝑧) in the estimands and the vertices whose outcomes are used in an estimator. Given some specifica-
tion of effective treatments 𝑔, one could construct an estimator of the ATE as a simple difference in the sample
means for vertices in effective treatment and in effective control

̂𝜏u�,S(1, 0) = �̂�u�,S(1) − �̂�u�,S(0)
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where we have

�̂�u�,S(𝑧) =
∑u�

u�=1 𝑌u�1[𝑔u�(𝑍) = 𝑔u�(𝑧)]

∑u�
u�=1 1[𝑔u�(𝑍) = 𝑔u�(𝑧)]

.

This estimator will only be unbiased for the corresponding estimand 𝜇u�
u�(𝑧) under certain conditions such that

the effective treatments are unconfounded. One way for the effective treatments to be unconfounded is if either
𝐸u�[𝑌u�|𝑔u�(𝑍) = 𝑔u�(𝑧)] or Pru�[𝑔u�(𝑍) = 𝑔u�(𝑧)] is the same for all vertices. Usually we would not want to assume
that 𝐸u�[𝑌u�|𝑔u�(𝑍) = 𝑔u�(𝑧)] is homogeneous, and Pr[𝑔u�(𝑍) = 𝑔u�(𝑧)] will not be homogeneous under many rele-
vant effective treatments, such as neighborhood treatment response (NTR), since the distribution of effective
treatments for a vertex depends on network structure. For example, as Ugander et al. [16] observe, high degree
vertices will generally have low probability of being assigned to some kinds of “extreme” effective treatments,
such as having all neighbors treated, while low degree vertices have a much higher probability of being in such
an effective treatment.

Observed effective treatments can be made unconfounded by conditioning on the design [15] or sufficient
information about the vertices. The experimental design determines the probability of assignment to an effec-
tive treatment 𝜋u�(𝑧) = Pr(𝑔u�(𝑍) = 𝑔u�(𝑧)). In the case of graph cluster randomization and effective treatments
determined by thresholds, these probabilities can be computed exactly using a dynamic program [16]. These
are generalized propensity scores that can then be used in Horvitz–Thompson estimators or other inverse-
probability weighted estimators, such as the Hajek estimator [15] of the ATE. The Horvitz–Thompson estimator
will often suffer from excessive variance, so we focus on the Hajek estimator:

̂𝜏u�,u�(𝑧1, 𝑧0) = (∑u�
u�=1

1[u�u�(u�)=u�u�(u�1)]
u�u�(u�1)

)
−1

∑u�
u�=1

u�u�1[u�u�(u�)=u�u�(u�1)]
u�u�(u�1)

−

(∑u�
u�=1

1[u�u�(u�)=u�u�(u�0)]
u�u�(u�0)

)
−1

∑u�
u�=1

u�u�1[u�u�(u�)=u�u�(u�0)]
u�u�(u�0)

(15)

The bias of this Hajek estimator for eq. (13) is not zero, but it is typically small and worth the variance reduction,
cf. [15].

Beyond bias, we also care about the variance of the estimator as well. Estimators making use only of vertices
with all neighbors in the same condition will suffer from substantially increased variance, both because few
vertices will be assigned to this effective treatment and because the weights in the Hajek estimator will be
highly imbalanced. This could motivate borrowing information from other vertices, such as by using additional
modeling or, more simply, through relaxing the definition of effective treatment, such as by using the fractional
relaxation of the NTR assumption (FNTR).

The most appropriate effective treatment assumption to use for the analysis of a given experiment is not
clear a priori. We will consider estimators motivated by two different effective treatments in our simulations.

3 Simulations

In order to evaluate both design and analysis choices, we conduct simulations that instantiate the model of
network experiments presented above. First, graph cluster randomization puts more vertices into positions
where their neighbors (and neighbors’ neighbors) have the same treatment; this is expected to produce observed
outcomes “closer” to those that would be observed under global treatment. Second, estimators using fractional
neighborhood treatment restrict attention to vertices that are “closer” to being in a situation of global treatment.
Third, weighting using design-based propensity scores adjusts for bias resulting from associations between
propensity of being in an effective treatment of interest and potential outcomes. Each of these three changes to
design and analysis is expected to reduce bias, potentially at a cost to precision. Under some conditions, we have
shown above that these design and analysis methods reduce (or at least do not increase) bias for the ATE. The
goal of these simulations then is to characterize the magnitude of this bias reduction, weigh it against increases
in variance, and do so specifically under circumstances that do not meet the given sufficient conditions for the
theoretical results.

For each run of the simulation, we do the following. First, we construct a small world network with 𝑁 = 1,000
vertices and initial degree parameter 𝑘 = 10. We vary the rewiring probability 𝑝rw ∈ {0.00, 0.01, 0.10, 0.50, 1.00},
thereby producing both regular powers of the cycle (𝑝rw = 0), graphs with “small world” characteristics (𝑝rw ∈
{0.01, 0.10}), graphs with many random edges and less clustering (𝑝rw = 0.50), and graphs with all random edges
(𝑝rw = 1.00). The small world model of networks [24] is notable for being able to succinctly introduce clustering
into an otherwise complex distribution over random graphs, all featuring a small diameter. The clustering of
the graph, typically measured by the clustering coefficient, is a measure of the extent to which adjacent vertices
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share many common neighbors in the graph, and many social networks, including online social networks, e.g.
[39], have been found to exhibit a high degree of clustering as well as a small diameter.

For graph cluster randomization, we use 𝜖-net clustering, as previously considered by Ugander et al. [16].
An 𝜖-net in the graph distance metric is a set of vertices such that no two vertices in the set are less than 𝜖 hops
of each other, and every vertex outside the set is within 𝜖 hops (in fact, 𝜖 − 1 hops) of a vertex in the set. An
𝜖-net can be formed by repeatedly selecting a vertex and removing it and every vertex within distance 𝜖 − 1
from the network, until all vertices have been removed. Having completed this step, the population of selected
vertices forms an 𝜖-net. An 𝜖-net clustering can be formed by assigning each vertex to the closest vertex in the
𝜖-net, and breaking the possible ties through some arbitrary rule. We compare clustered random assignment
using 𝜖-nets (with 𝜖 = 3) to independent random assignment, where vertices are independently assigned to
treatment and control.18 We generate the observed outcomes using the probit model in eqs (2) and (3), and set
the baseline as 𝛼 = −1.5, making the behavior somewhat rare:

𝑌∗
u�,u� = −1.5 + 𝛽𝑍u� + 𝛾

𝐴
′

u�𝑌u�,u�−1

𝑘u�
+ 𝑈u�,u�, 𝑌u�,u� = 1{𝑌∗

u�,u� > 0}. (16)

We initialize 𝑌u�,0 = 0 for all vertices, and then run the process for all combinations of 𝛽 ∈ {0.0, 0.25, 0.5, 0.75, 1.0}
and 𝛾 ∈ {0.0, 0.25, 0.5, 0.75, 1.0}, up to a maximum time 𝑇 = 3.19 Note that this data generating process does
not satisfy the conditions for graph cluster randomization to be bias reducing given by Theorem [2.1], since
the outcome model is not linear in 𝑍. We emphasize that this is a specific choice of model, which we selected
because it is a widely-used model that does not satisfy those conditions, while being low-dimensional to easily
explore via simulation.

Finally, for each simulation, we compute three estimates of the ATE. The individual unweighted estimator
(or difference-in-means estimator) ̂𝜏ITR,S makes no use of neighborhood information. This is the baseline to
which we compare the neighborhood unweighted estimator ̂𝜏FNTR,S and the neighborhood Hajek estimator

̂𝜏FNTR,H, both using a fractional neighborhood treatment response (FTNR) specification of effective treatments
with 𝜆 = 0.75. That is, these estimators count a vertex as being in effective treatment or effective control if at
least three-fourths of its neighbors have the same assignment. With independent assignment, the conditions
for bias reduction given in Theorem 2.3 from using FNTR instead of ITR are satisfied.

We run each of these configurations 5,000 times. We estimate the true ATE with simulations in which all
vertices are put in treatment or control. Each configuration is run 5,000 times for the global treatment case and
5,000 times for the global control case.20 Our evaluation metrics are bias and root mean squared error (RMSE)
of the estimated ATE.

3.1 Design

First we examine the bias and mean squared error of the estimated ATE for designs using graph cluster ran-
domization compared with independent randomization. In both cases we use the difference-in-means estima-
tor ̂𝜏ITR,S. As expected, using graph cluster randomization reduces bias (Figure 3), especially when the peer
effects and direct effects are large relative to the baseline (𝛼 = −1.5), and when the network exhibits substan-
tial clustering (i.e., the rewiring probability 𝑝rw is small). While these bias reductions are small on an absolute
scale, note that the true ATEs range from 0 to 0.41. When there are direct effects and peer effects, graph clus-
ter randomization reduces the bias of the estimated ATE from independent randomization by 58% to 99% for
𝑝rw ∈ {0.00, 0.01, 0.10}.
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Figure 3 Change in bias due to clustered random assignment as a function of the direct effect of the treatment u�, the
rewiring u�u�u� probability (different colors), and the strength of the peer effect u� (different panels). Random assignment
clustered in the network reduces bias, especially when peer effects are large relative to the baseline (u� = −1.5) and when
the network is more clustered.

Reduction in bias can come with increases in variance, so it is worth evaluating methods that reduce bias
also by the effect they have on the error of the estimates. We compare RMSE, which is increased by both bias
and variance, between graph cluster randomization and independent assignment in Figure 4. In some cases, the
reduction in bias comes with a significant increase in variance, leading to an RMSE that is either left unchanged
or even increased. However, in cases where the bias reduction is large, this overwhelms the increase in variance,
such that graph cluster randomization reduces not only bias but also RMSE substantially. For example, with
substantial clustering (𝑝rw = 0.01) and peer effects (𝛾 = 0.5), we observe approximately 40% RMSE reduction
from graph cluster randomization. While the RMSE reduction is strongest under substantial clustering, if both
the direct effect strength and peer effect strength are strong, we observe significant universal reductions in
RMSE from clustered randomization (though to varied extents), regardless of the clustering structure given by
𝑝rw. It is notable that even with small networks (recall that 𝑁 = 1, 000), the bias reduction from graph cluster
randomization is large enough to reduce RMSE. To further examine the robustness of bias reduction through
graph cluster randomization, Appendix A.4 reports on simulations with non-monotonic responses.
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Figure 4 Percent change in root-mean-squared-error (RMSE) from clustered assignment for small world networks. While
in some cases graph cluster randomization increases RMSE, in other cases (when bias reduction is large), it quite
substantially reduces RMSE.

3.2 Design and analysis

In addition to changes in design, we can also use analysis methods intended to account for interference. We
utilize the fractional neighborhood exposure model, which means we only include vertices in the analysis if
at least three-quarters of their friends were given the same treatment assignment.21 With this neighborhood
exposure model, we consider using propensity score weighting, which corresponds to the Hajek estimator, or
ignoring the propensities and using unweighted difference-in-means. The second estimator has additional bias
due to neglecting the propensity-score weights.

Figure 5 Relative bias in ATE estimates for different assignment procedures, exposure models, and estimation methods.
The most striking differences are between the assignment procedures, though the neighborhood exposure model also
reduces bias (at the cost of increased variance – see Figure 6). Relative bias is not defined when the true value is zero, so
we exclude simulations with the direct effect u� = 0. For all networks, the rewiring probability was u�u�u� = 0.01.

Figure 5 shows several combinations of design randomization procedure, exposure model, and estimator.
We see that using a neighborhood-based definition of effective treatments further reduces bias, while the impact
of using the Hajek estimator is minimal.

The low impact of the Hajek estimator follows understandably from the fact that small-world graphs do not
exhibit any notable variation in vertex degree, which is the principle determinant of the propensities used by
the Hajek estimator. Thus, for small-world graphs the weights used by the Hajek estimator are very close to
uniform. With more degree heterogeneity expected in real networks, the weighting of the Hajek estimator will
be more important, especially when these heterogeneous propensities are highly correlated with behaviors. In
general, however, the change in bias from adjusting the analysis are not as striking as those from changes due
to the experimental design.

Using the neighborhood exposure model means that the estimated average treatment effect is based on data
from fewer vertices, since many vertices may not pass the a priori condition. So the observed modest changes in
bias come with increased variance, as reflected in the change in RMSE compared with independent assignment
without using the exposure condition (Figure 6).
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Figure 6 Percent change in root-mean-squared-error (RMSE) compared with independent assignment with the simple
difference-in-means estimator. Using the neighborhood condition with independent assignment results in large increases
in variance: for the two smaller values of u� , this produces an almost 400% increase in RMSE. For this reason, the y-axis is
limited to not show these cases. Rewiring probability u�u�u� = 0.01.

3.3 Results with stochastic blockmodels

As a check on the robustness of these results to the specific choice of network model, we also conducted simu-
lations with a degree-corrected block model (DCBM) [25], which provides another way to control the amount
of local clustering in a graph and to produce more variation in vertex degree than is possible with small world
networks.

In each simulation, the network is generated according to a DCBM with 1,000 vertices and 10 communi-
ties. We present results for a subset of the parameter values used with the small-world networks. Instead of
varying the rewiring probability 𝑝rw to control local clustering, we vary the expected proportion of edges that
are within a community 𝑝comm ∈ {0.2, 0.5, 0.8} where vertices are assigned to one of the 10 communities uni-
formly at random. The distribution of expected degrees is a discretized log-normal distribution with mean 10
(as with the small-world networks) and variance 40. This produces substantially more variation in degree than
the small-world networks. Each configuration is repeated 5,000 times.

Figure 7 displays the change in bias and error that results from graph cluster randomization in these simu-
lations. Again, while small on the absolute scale, the observed bias reductions are, with the exception of cases
where there are no direct effects, reducing bias by at least 20%. This is reflected in the RMSE reduction results,
which include the added error due to variance from graph cluster randomization. The bias and error reduc-
tion with the DCBM networks is not as large, for the same values of other parameters, as with the small world
networks. We interpret this as a consequence of the presence of higher-degree vertices and of less local cluster-
ing, even in the simulations with high community proportion (i.e., 𝑝comm = 0.8).22 Qualitative features of these
results (e.g., bias and error reduction increase with increases in peer effects and increases in clustering) match
those from the small-world networks.
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Figure 7 Change in (a) bias and (b) RMSE due to clustered random assignment. Lines are labeled with the expected
proportion of edges that are within a community u�u�u�u�u�. As before, results vary with the strength of the peer effect u�, and
the direct effect of the treatment u�. The largest bias and error reductions here are not as substantial as the largest bias
reductions with small-world networks.

Figure 8(a) displays bias as a function of both design and analysis decisions. As with the small-world net-
works, estimators making use of the 𝜆-fractional neighborhood exposure condition reduce bias, whether used
with independent or clustered random assignment. This additional bias reduction comes at the cost of addi-
tional variance, such that, in terms of MSE, estimators using the exposure condition are worse for many of the
parameter values included in these simulations (Figure 8(b)).

Figure 8 Relative bias (a) and change in RMSE (b) in ATE estimates for different assignment procedures, exposure models,
and estimation method, using the degree-corrected block model with community proportion u�u�u�u�u� = 0.8. Analysis using
the exposure model provides additional bias reduction over using graph cluster randomization only – with a cost in
variance.

4 Discussion

Recent work on estimating effects of global treatments in networks through experimentation has generally
started with a particular set of assumptions about patterns of interference, such as the neighborhood treatment
response (NTR) assumption, that make analysis tractable and then developed estimators with desirable prop-
erties (e.g., unbiasedness, consistency) under these assumptions [14, 15]. Similarly, Ugander et al. [16] analyzed
graph cluster randomization under such assumptions. Unfortunately, these tractable exposure models are also
made implausible by the very processes, such as peer effects or social interactions, that are expected to produce
interference in the first place. Therefore, we have considered what can be done to reduce bias from interference
when such restrictions on interference cannot be assumed to apply in reality.
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The theoretical analysis in this paper offers sufficient conditions for this bias reduction through design and
analysis in the presence of potentially global interference. To further evaluate how design and analysis decisions
can reduce bias, we reported results from simulation studies in which outcomes are produced by a dynamic
model that includes peer effects. These results suggest that when networks exhibit substantial clustering and
there are both substantial direct and indirect (via peer effects) effects of a treatment, graph cluster randomiza-
tion can substantially reduce bias with comparatively small increases in variance. Significant error reduction
occurred with networks of only 1,000 vertices, highlighting the applicability of these results to experiments
with networks of varied sizes – not just massive networks. Since a prior version of this paper, these bias and re-
duction results have been replicated on a subgraph of a large online social network [41]. Additional reductions
in bias can be achieved through the specific estimators used, even though these estimators would usually be
motivated by incorrect assumptions about effective treatments.

We have focused on improving estimates of effects of global treatments, but we have not addressed statis-
tical inference that is robust to network dependence. Experimenters will generally want to conduct statistical
inference, such as testing null hypotheses of no effects of the treatment or producing confidence intervals for es-
timated ATEs. Standard methods for randomization inference can be used to test the sharp null hypothesis that
the treatment has no effects whatsoever (e.g., permutation tests for clustered randomization). Other hypothe-
ses, such as those about the presence of spillover effects (i.e., SUTVA, the ITR assumption), can be tested exactly
either by assuming constant direct effects [19] or using conditional randomization inference for non-sharp null
hypotheses [18, 22].

Further work should examine how our results apply to other networks and data-generating processes. The
main theoretical analysis and simulations in this paper used models in which outcomes are monotonic in treat-
ment and peer behavior. Such models are a natural choice given many substantive theories; for example, when
there are strategic complements in the behavior. On the other hand, non-monotonic responses are expected
when having a mix of treated and control neighbors is more different from either having all treated or control
neighbors (e.g., inconsistent service offerings to neighbors result in fewer purchases). Other cases where we
expect non-monotonic responses include cases where value of engaging in a behavior is determined by a mar-
ket (e.g., completing a job training program). Our simulations did not include vertex characteristics (besides
degree) and prior behaviors, which could play an important role in the bias and variance for different designs
and estimators.

Much of the empirical literature that considers peer effects in networks, whether field experiments, e.g.
[42–46], or observational studies, e.g. [36, 47], has aimed to estimate peer effects themselves, rather than es-
timating effects of interventions that work partially through peer effects. This may reflect differences in the
quantities of interest for some topics in social science and for decision-making about potential interventions.
It is important to note that the intuitions that motivate the clustered designs examined here may not apply
to these other estimands (e.g., the case of trying to separately estimate direct and indirect effects). A fruitful
direction for future work would involve directly modeling the peer effects involved and then using these mod-
els to estimate effects of global treatments, cf. [48].23 This could substantially expand the range of designs and
analysis methods to consider.
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Appendix

A Modified graph cluster randomization: Hole punching

We now briefly present a simple modification of graph cluster randomization that adds vertex-level random-
ness to the treatment assignment, such that some vertex assignments may not match their cluster assignment.
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We set

𝑊u� ∼ Bernoulli(𝑞u�(u�))

𝑋u� ∼ Bernoulli(𝜂)

𝑍u� = 𝑋u�𝑊u�(u�) + (1 − 𝑋u�)(1 − 𝑊u�(u�)).

The 𝑋u� are independent switching variables that set 𝑍u� to 𝑊u�(u�) with probability 𝜂, typically high, and flip the
assignment otherwise (“punch a hole”). That is, clusters are assigned to have their vertices predominantly in
one of treatment or control. We call this modification hole punching, because it inverts the treatment condition
of a small fraction of vertices, placing them in a highly isolated treatment position within their cluster. This
modification could be useful for estimating differences between direct and peer effects, since it results in many
vertices experiencing the direct treatment without peer effects or the peer effects without the direct treatment.
It also has the appealing consequence of avoiding exact zero probabilities of assignment to some vectors 𝑍. This
is important in cases where one might want to compare outcomes as a function of number of peers assigned
to the treatment; otherwise, many of these comparisons would be between conditions to which many vertices
could not be assigned. This could also be desirable when testing for interference is a goal, cf. [22], in addition
to estimating a global ATE.

B Bias reduction from design: balanced linear case

In this appendix, we consider the linear outcome model under an alternative graph cluster randomization that
enforces balance (i.e., equal sample sizes in treatment and control) Assume there is an even number of clusters
𝑁u�, each with 𝑁/𝑁u� vertices. Pick 𝑁u�/2 clusters at random and assign them to treatment; assign the remaining
clusters to control.

Theorem A.1 Assume we have a outcome model for all vertices 𝑖 ∈ 𝑉 such there exists an 𝑁-vector 𝑎 and 𝑁 ×𝑁
matrix 𝐵 with non-negative entries 𝐵u�u� ≥ 0 such that

𝐸u�[𝑌u�(𝑧, 𝑈)] = 𝑎u� + ∑
u�∈u�

𝐵u�u�𝑧u�. (17)

Then for some mapping of vertices to clusters 𝐶(⋅), the absolute bias of 𝜏u�
ITR(1, 0) when 𝑑 is graph cluster ran-

domization is less than or equal to the absolute bias when 𝑑 is independent assignment, with a fixed treatment
probability 𝑝.

Proof. Using the linear model for 𝑌u� and the definition of 𝜏, we have that the true ATE 𝜏 is given by

𝜏(1, 0) = 𝜇(1) − 𝜇(0) = 1
𝑁

∑
u�u�

𝐵u�u� (18)

for this outcome model. Under balanced graph cluster randomization,

𝜏bgcr
ITR (1, 0) = 1

u� ∑u�u� 𝐵u�u� [1[𝐶(𝑖) = 𝐶(𝑗)] + 1[𝐶(𝑖) ≠ 𝐶(𝑗)] (u�u�/2−1
u�u�−1

− u�u�/2
u�u�−1

)] (19)

= 1
u� ∑u�u� 𝐵u�u� [1[𝐶(𝑖) = 𝐶(𝑗)] − 1[u�(u�)≠u�(u�)]

u�u�−1
] . (20)

We can extend this to the case where the mapping of vertices to clusters is random:

𝜏bgcr
ITR (1, 0) = 1

u� ∑u�u� 𝐵u�u� [Pr(𝐶(𝑖) = 𝐶(𝑗)) − Pr(u�(u�)≠u�(u�))
u�u�−1

] . (21)

Separating out 𝐵u�u�:

𝜏bgcr
ITR (1, 0) = 1

u� (∑u� 𝐵u�u� + ∑u�u�;u�≠u� 𝐵u�u� (Pr(𝐶(𝑖) = 𝐶(𝑗)) − Pr(u�(u�)≠u�(u�))
u�u�−1

)) . (22)



Eckles et al. DE GRUYTER

If we have uniform probability over all cluster assignments with the same number of vertices per cluster, then
for 𝑖 ≠ 𝑗,

Pr(𝐶(𝑖) = 𝐶(𝑗)) =
𝑁/𝑁u� − 1

𝑁
,

so

𝜏bgcr
ITR (1, 0) = 1

u� (∑u� 𝐵u�u� − ∑u�u�;u�≠u� 𝐵u�u�
u�u�

(u�u�−1)u� ) . (23)

Under balanced independent assignment, we just have 𝑁u� = 𝑁, so

𝜏bind
ITR (1, 0) = 1

u� (∑u� 𝐵u�u� − ∑u�u�;u�≠u� 𝐵u�u�/(𝑁 − 1)) . (24)

Because 𝐵u�u� ≥ 0, together this implies that 𝜏(1, 0) − 𝜏gcr
ITR(1, 0) ≤ 𝜏(1, 0) − 𝜏 ind

ITR(1, 0), where monotonicity again
dictates that each side of this inequality is positive.

The proof showed that clustering can reduce bias over independent assignment when preserving balance.
The relative bias for graph cluster randomization that preserves balance is

𝜏gcr
ITR(1, 0)/𝜏(1, 0) − 1 =

∑u�u� 𝐵u�u� [1[𝐶(𝑖) = 𝐶(𝑗)] − 1[u�(u�)≠u�(u�)]
u�u�−1

]

∑u�u� 𝐵u�u�
− 1 (25)

= (1 + 1
𝑁u� − 1

) ⎛⎜
⎝

∑u�u� 𝐵u�u�1[𝐶(𝑖) = 𝐶(𝑗)]
∑u�u� 𝐵u�u�

− 1⎞⎟
⎠

.

which is the same expression as the relative bias for graph cluster randomization except for the multiplicative
factor in the front. For large enough 𝑁u�, the relative biases will be identical, and therefore meaningful relative
bias reduction occurs depending only on the clustering’s relationship to the values 𝐵u�u�, and not whether the
sampling scheme preserves balance or not.

C Bias reduction from analysis

Here we restate and prove Theorem 2.3 from the main text. We also consider two possible extensions of this
theorem to graph cluster randomization (from independent random assignment), giving a counterexample for
one extension and proving an analog of the theorem for the other extension.

Consider functions 𝑔u�(⋅) such that 𝑔u�(𝑍) = 𝑔u�(𝑧) just implies that for some subset of vertices 𝐽u� we have that
∑u�∈u�u�

1[𝑍u� = 𝑧u�] ≥ 𝑙u� and that 𝑍u� = 𝑧u�. These are conditions such that some subset of size 𝑙u� of a set of vertices has
treatment assignment matching that in the global treatment vector of interest 𝑧. The ITR and NTR assumptions
both are of this type, where with ITR 𝐽u� is the empty set and with NTR 𝐽u� = 𝛿(𝑖) and 𝑙u� = 𝑘u�, 𝑖’s degree. The
fractional relaxation of NTR (FNTR) is also of this type, with 𝐽u� = 𝛿(𝑖) and 𝑙u� = ⌈𝜆𝑘u�⌉.

Definition 2.2 If we have two such functions 𝑔u�
u� (⋅) and 𝑔u�

u� (⋅) with the same 𝐽u�, and 𝑔u�
u� (𝑧) = 𝑔u�

u� (𝑧′) implies
𝑔u�

u� (𝑧) = 𝑔u�
u� (𝑧′), then we say that 𝑔u�

u� (⋅) is more restrictive than 𝑔u�
u� (⋅).

Theorem 2.3 Let 𝑔u�
u� (⋅) and 𝑔u�

u� (⋅) be functions such that 𝑔u�
u� (⋅) is more restrictive than 𝑔u�

u� (⋅) for every vertex 𝑖, and
let independent random assignment be the experimental design. A sufficient condition for estimand 𝜏 ind

u�u� (1, 0)
to have less than or equal absolute bias than 𝜏 ind

u�u� (1, 0), where these estimands are defined by eq. (13), is that we
have monotonically increasing responses or monotonically decreasing responses for every vertex with respect
to 𝑧.

Proof. All expectations are taken with respect to independent random assignment. Assume monotonically in-
creasing responses for every vertex and select an arbitrary vertex 𝑖. Let

̃𝑌u�(𝑧u�u�
) = 𝐸u�u�/u�u�

[𝑌u�(𝑧u� = 1, 𝑍u�/u�u�
= 𝑧u�u�

)]. (26)

This quantity is the expectation of the potential outcome for 𝑖 when 𝑧u� = 1 and the subset of 𝑧 corresponding to
𝐽u� is set to 𝑧u�u�

. The monotonicity of 𝑌u� carries over to ̃𝑌u�(𝑧u�u�
).
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To reduce the notation in what follows, we define 𝐴u� to be the event that 𝑔u�
u� (𝑍) = 𝑔u�

u� (1) and 𝐵u� to be the
event that 𝑔u�

u� (𝑍) = 𝑔u�
u� (1). We also define 𝑞u�(𝑍) = ∑u�∈u�u�

1[𝑍u� = 1]. Then

𝐸[�̃�u�|𝐴u�] =
|u�u�|

∑
u�≥u�u�u�

𝐸[�̃�u�|𝑞u�(𝑍) = 𝑞]𝑃(𝑞u�(𝑍) = 𝑞|𝐴u�),

𝐸[�̃�u�|¬𝐴u� ∧ 𝐵u�] =
u�u�u� −1

∑
u�≥u�u�u�

𝐸[�̃�u�|𝑞u�(𝑍) = 𝑞]𝑃(𝑞u�(𝑍) = 𝑞|¬𝐴u� ∧ 𝐵u�).

(27)

Due to independent random assignment, conditioning on 𝑞u�(𝑍) = 𝑞 means uniformly sampling a 𝑧u�u�
that has

𝑞 ones and |𝐽u�| − 𝑞 zeroes. Consider the following process where 𝑞 < |𝐽u�|. Randomly select a 𝑧u�u�
with 𝑞 ones and

|𝐽u�|−𝑞 zeroes. Select at random a 0 element and change it into a 1 to create another vector 𝑧′
u�u�
. Record both �̃�u�(𝑧u�u�

)
and �̃�u�(𝑧′

u�u�
) as a pair of values. Due to the monotonicity of �̃�u�, we have that �̃�u�(𝑧u�u�

) ≤ �̃�u�(𝑧′
u�u�
).

In this process, 𝑧u�u�
is a uniformly sampled vector that has 𝑞 ones and |𝐽u�| − 𝑞 zeroes, and 𝑧′

u�u�
is a uniformly

sampled vector that has 𝑞 + 1 ones and |𝐽u�| − (𝑞 + 1) zeroes. Repeating this process an infinite number of times
and using the empirical average of the �̃�u�(𝑧u�u�

)’s computes 𝐸[�̃�u�|𝑞u�(𝑍) = 𝑞]. Similarly, the empirical average of
the �̃�u�(𝑧′

u�u�
) computes 𝐸[�̃�u�|𝑞u�(𝑍) = 𝑞 + 1]. Due to the per sample inequality, this shows that 𝐸[�̃�u�|𝑞u�(𝑍) = 𝑞] ≤

𝐸[�̃�u�|𝑞u�(𝑍) = 𝑞 + 1]. By induction, 𝐸[�̃�u�|𝑞u�(𝑍) = 𝑞] ≤ 𝐸[�̃�u�|𝑞u�(𝑍) = 𝑞′] when 𝑞 < 𝑞′. Combining this with eq. (27),

𝐸[�̃�u�|¬𝐴u� ∧ 𝐵u�] ≤ 𝐸[�̃�u�|𝐴u�]. (28)

Since the design is independent random assignment, we have that

𝐸[𝑌u�|𝐵u�] = 𝐸[�̃�u�|𝐵u�]
= 𝐸[�̃�u�|𝐴u�]𝑃(𝐴u�|𝐵u�) + 𝐸[�̃�u�|¬𝐴u� ∧ 𝐵u�]𝑃(¬𝐴u�|𝐵u�). (29)

where in the second equality we have used that 𝑔u�
u� is more restrictive than 𝑔u�

u� and that the set 𝐽u� is common to
both 𝑔u�

u� and 𝑔u�
u� . With eq. (28), this implies

𝐸[𝑌u�|𝐵u�] ≤ 𝐸[�̃�u�|𝐴u�] = 𝐸[𝑌u�|𝐴u�]. (30)

Since this inequality applies for all vertices 𝑖, we therefore have that

𝜇ind
u�u� (1) ≤ 𝜇ind

u�u�(1), (31)

from which we immediately conclude that 𝑔u� has less absolute bias for 𝜇(1) than 𝑔u�. An analogous argument
applies for 𝜇(0), proving that 𝜏 ind

u�u� has less absolute bias for 𝜏(1, 0), the average treatment effect.
The proof for monotonically decreasing responses follows when switching the inequalities throughout the

above.

This proposition demonstrates how using more restrictive exposure conditions can be helpful in reducing
bias, but the proposition just applies to independent assignment, rather than graph cluster randomization. To
show why it does not hold for graph cluster randomization, we present the following counterexample with two
fractional neighborhood treatment response (FNTR) effective treatments.

Consider some vertex 𝑖 with no neighbors in its own cluster, and three other clusters present in its neigh-
borhood: one cluster with 10 neighbors, one cluster with one neighbor, and another cluster with one neighbor;
call this last neighbor vertex 𝑎. Let 𝑌u� = 1 when 𝑍u� = 1 and 𝑍u� = 1, and let 𝑌u� = 0 otherwise. Let the less
restrictive function 𝑔u�

u� (⋅) require that at least 2 neighbors match the global treatment vector, and let the more
restrictive function 𝑔u�

u� (⋅) require that at least 3 neighbors match; that is, let 𝑙u�u� = 2 and 𝑙u�u� = 3. Then under
graph cluster randomization, we have 𝐸[𝑌u�|𝐴u�] ≈ 0.5, but 𝐸[𝑌u�|𝐵u�] ≈ 0.6. So using the more restrictive function
actually increases bias in this somewhat extreme scenario.

While this counterexample demonstrates that using more restrictive exposure conditions of this kind is
not always helpful under graph cluster randomization, we do observe bias reduction in our simulations using
graph cluster randomization without meeting the sufficient conditions of the theorem. In general, we expect
that for bias to increase, there must be heterogeneous effects across heterogeneously sized clusters as in the
counterexample above.

In fact, with a redefinition of the exposure conditions, we can provide a similar proposition that does include
graph cluster randomization and also encompasses independent assignment as a special case.
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Corollary A.2 Consider a fixed set of clusters which will be used for graph cluster randomization. Let
function 𝑔u�(⋅), for all vertices 𝑖, be such that 𝑔u�(𝑍) = 𝑔u�(𝑧) implies that some subset of clusters 𝐽u� which
do not include 𝑖 we have that ∑u�∈u�u�

1[𝑍u� = 𝑧u�] ≥ 𝑙u� (at least 𝑙u� of the clusters in 𝐽u� match the global
treatment vector 𝑧 exactly), and 𝑍u� = 𝑧u�. Consider two such functions where 𝑔u�

u� (⋅) is more restrictive than
𝑔u�

u� (⋅) for all 𝑖. Then a sufficient condition for estimand 𝜏gcr
u�u� (1, 0) to have less than or equal absolute bias

than 𝜏gcr
u�u� (1, 0), where these estimands are defined by eq. (13), is that we have monotonically increasing

responses or monotonically decreasing responses for every vertex with respect to 𝑧.

Proof. This proof is essentially the same as for Theorem 2.3 except �̃�u� is redefined as

̃𝑌u�(𝑧u�u�
) = 𝐸u�u�/u�u�

[𝑌u�(𝑧u�u�
= 1, 𝑍u�/u�u�

, 𝑧u�u�
)], (32)

expectations are computed with respect to graph cluster randomization instead of independent treatment as-
signment, and references to 1’s and 0’s apply to clusters in 𝐽u�.

An important special case of this corollary covers the comparison of FNTR with ITR under graph cluster
randomization, since FNTR and ITR can be written as cluster-level exposure conditions of this kind.

D Additional simulations with non-monotonic responses

The simulations reported in the main text, while not satisfying the conditions for graph cluster randomization to
be bias reducing given by Theorem 2.1, did nonetheless have responses monotonically increasing with respect
to 𝑧. We conducted some additional simulations to explore the consequences of graph cluster randomization
with non-monotonic responses.

We repeat the simulations with small world networks in Section 3 with the following change. We
run the process 1,000 times for all combinations of 𝛽 ∈ {0.0, 0.25, 0.5, 0.75, 1.0} (as before) and 𝛾 ∈
{0, −0.25, −0.5, −0.75, −1.0}; that is, the peer effect now has the opposite sign as the direct effects (when non-
zero). We fix 𝑝rw = 0.01.

Figure 9 shows the results of these simulations. Graph cluster randomization results in bias reduction, and
for larger (in absolute terms) values of 𝛾 it again results in error reduction.
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Figure 9 Changes in bias and root-mean-squared-error (RMSE) due from clustered random assignment for small world
networks with non-monotonic responses and prw = 0.01.

Notes
1Estimating this quantity is a common goal. For example, Bond et al. [3] consider the effect of a voter mobilization intervention, such

that the aim is to compare voter turnout if everyone (or almost everyone) is assigned to the treatment with turnout if everyone is assigned
to the control. Many routine experiments in the Internet industry aim to choose among two or more alternatives based on an estimate of
this ATE [4, 5]. Hudgens and Halloran [6] call this the average total causal effect. There are other causal quantities that may be of interest,
which we do not treat here. Other authors consider decompositions of effects into various direct and indirect effects of the treatment [6–10].

2To allow for other sources of dependence besides interference, we allow u�u� to be random, rather than fixed. In some cases the experi-
menter may regard these potential outcomes as fixed.

3This is closely connected to what Holland [11] regards as the fundamental problem of causal inference – that one can only observe a
unit’s response under a single treatment. The difference is that here we can only observe all units’ responses under a single global treatment.

4While we limit the analysis here to cases where the measured network and the network through which the interaction occur are the
same, the methods examined here may also substantially reduce bias in when using a network observed with error.

5This intuition applies for the global ATE considered here. For estimating other quantities, such as the magnitude of the interference,
very different intuitions apply.

6For the purposes of this paper, we assume that the network is fixed over the timescale of the experiment.
7A normal but minor exception occurs when forcing a specific number of units within a block to be assigned to each of treatment and

control; this produces negative dependence between units in the same block. This includes global balancing of sample sizes in treatment
and control, as in a completely randomized experiment, rather than simple randomized experiment, as a special case.

8Thus, the present analysis can be applied to cases where the experimenter observes only community membership and so their estima-
tors may be biased by interference via an unobserved network.

9The vertices might interact without necessarily violating the ITR assumption. This can occur, for example, when vertices interact in
one period, and then are affected by treatment assignment, while no longer interacting. This is why we define u�u�(⋅) as being a function from
𝕌u� rather than just 𝕌.

10Manski [14] calls these models of simultaneous endogenous choice a “system of structural equations”. But because these equations
are simultaneous, they are not structural in the sense of corresponding to a directed acyclic graph (DAG) given a causal interpretation [29].
However, we can regard these equations as specifying an equilibrium that arises out of some unknown dynamic process. We prefer to work
with a posited dynamic process, which may or may not be in equilibrium when we observe it, cf. [30].
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11Note that this specification in terms of “direct” effect could be compatible with various data-generating processes that involve “indirect”
effects – at least on a short time scale.

12And similarly for the assumed exposure models in Aronow and Samii [15] and Ugander et al. [16].
13Note that in the above treatment, the mapping of vertices to clusters is not random, so any mapping is bias reducing.
14As shown by Ugander et al. [16], assuming NTR, that the graph satisfies a restricted growth condition, and non-stochastic outcomes,

this implies that an experimental design with u�(u�) clusters of size u�(1) will produce NTR-based estimators that are asymptotically
consistent.

15It is precisely the effective treatment assumption that allows generalization from a single sampled u� to the behavior at u�1 and u�0.
16Of course, ITR can also be analyzed with any choice of u�u�, including the empty set.
17Under complete randomization (i.e., when a fixed number of clusters are randomized to treatment, this estimator can be biased if

clusters vary in size [37, 38].
18Simulations for the Louvain method [40] for community detection, not reported here, are qualitatively similar to those for u�-net clus-

tering, but generally resulted in more bias reduction but also larger variance increases, as expected by this method’s resolution limit.
19We also repeated these simulations with the small-world networks for u� = 10. The results were qualitatively similar.
20As a variance-reduction strategy for comparisons between designs and true ATE, we use common random numbers throughout the

simulations where possible. In particular, for generating observed outcomes, the first instance of each configuration uses the same seed u�1,
the second instance of each configuration uses the same seed u�2, and so on.

21It is possible for no vertices to meet this condition for treatment or for control. In this case, the estimator is undefined. If this occurs, we
expect that experimenters would re-randomize or modify their analysis plan. For the results shown here, we exclude simulations where
this occurred, which corresponds to re-randomizing. This did not occur for graph clustered randomization. For independent assignment,
this occurred for one of the 5,000 simulations for rewiring probability u� = 0.01 (i.e., the results shown in Figure 5).

22Note that with u�comm = 0.8 and the chosen degree distribution, the DCBM networks have an average clustering coefficient of approxi-
mately 0.095 and average transitivity of approximately 0.091. This is similar to that of small-world networks with u�rw = 0.5. This observed
bias and error reduction is likewise comparable to that observed with those small-world networks.

23In the language of contemporary econometrics, one could describe the present work as taking a “reduced form” approach to this
problem, rather than trying to learn about the underlying data generating process through estimating “structural” parameters.
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