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Causal inference on networks

Fundamental problem: want to compare (average treatment effect, ATE), 
but can’t observe network in both states at once.

Universe A Universe B



Experiments with interference

Content ranking models

Product design

Chat/communication features
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Network Experimentation Process

▪ Initialization: An empirical graph or graph model

▪ Design: Graph cluster randomization

▪ Outcome generation: Observe behavior (or simulate)

▪ Analysis: Discerning effective treatment

Treatment
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Control weight

Initialization Design Outcome Generation Analysis

Figure 1: Model of the network experimentation process, consisting of (i) initialization,
which generates the graph and vertex characteristics, (ii) design, which determines the
randomization scheme, (iii) outcome generation, which observes or simulates behavior,
and (iv) analysis, which constructs an estimator. We examine the bias and variance
of treatment effect estimators under different design and analysis methods for varied
initialization and outcome generation processes.

treatment to all vertices. Let Z be a vector giving each vertex’s treatment assignment,
so that Yi(Z = z) is the potential outcome of interest for vertex i when Z is set to z.
Then the quantity of interest is a contrast between two such treatment vectors,

⌧(z1, z0) =
1

N

X

i

E[Yi(Z = z1)� Yi(Z = z0)], (1)

where N is the number of units and z1 and z0 are two treatment assignments. Note that
each vertex’s potential outcome is a function of the global treatment assignment vector
Z. Additional assumptions will thus be required for ⌧ to be identifiable. This is closely
connected to what Holland (1988) calls the fundamental problem of causal inference —
that one can only observe a unit’s response under a single treatment. The difference is
that here we can only observe all vertices’ responses under a single global treatment. To
identify ⌧ , it is sufficient to assume SUTVA and that treatment assignment is ignorable.
In the absence of assuming SUTVA, other assumptions will be necessary.

2.1 Initialization
Initialization is everything that occurs prior to the experiment. This includes network
formation and the processes that produce vertex characteristics and prior behaviors. In
some cases, we may regard this process as random, and so wish to understand design
and analysis decisions averaged over instances of this process; for example, we may
wish to average over a distribution of networks that corresponds to particular network
formation model. In other cases, we may regard the outcome of this process as fixed;
for example, we may be working with a particular network and vertices with particular
characteristics, which we wish to condition on in planning our design and analysis.

When initialization is complete, we have a particular network G = (V,E) with
adjacency matrix A. In the simulations we present here, G is either a particular real
network we observe or it is generated as a small world network (Watts and Strogatz,
1998). The small world network model has three parameters: the network size N ,
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Design: Graph cluster randomization
▪ Partition graph into clusters (small, balanced clusters preferable)

▪ Assign each cluster to  treatment with probability q

▪ Assign all vertices to their cluster’s treatment

More information: Ugander-Karrer-Backstrom-Kleinberg, KDD 2013



Outcome generation 
▪ Nonparametric structural equation model for observed outcomes, 
where outcomes are a function of vertex i’s ki neighbors’ prior behavior:


!

!

▪ Example: Utility linear-in-means used in simulations


hi,t(·) : Z⇥ Yki ⇥ UN ! Y

Y ⇤
i,t = ↵+ �Zi + �

A0
iYi,t�1

ki
+ Ui,t

Yi,t = 1[Y ⇤
i,t > 0]
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Treatment vs. Behavior Mediation
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Only treatment matters

▪ No long-range dependence

▪ Unbiased estimators easy


!

Behavior matters

▪ Adds long-range dependence

▪ Estimator needs model of  behavior 

▪ Bias is tricky

▪ Realistic
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Analysis
▪ Interested in average treatment effect (ATE)

▪ Population estimands:


!

!

▪ indices: experimental design d, effective treatment g


!
▪ Examples of g: 
 Individualistic treatment response (ITR),




 
 
 Neighborhood treatment response (NTR),



 
 
 Fractional neighborhood treatment response (FNTR)

µd
g(z) =

1

N

X

i

Ed[Yi|gi(Z) = gi(z)]

⌧dg (z1, z0) = µd
g(z1)� µd

g(z0)

(see Manski, 2013)
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Bias reduction from design

Assume we have a linear outcome model for all vertices i 2 V such that

EU [Yi(z, U)] = ai +
X

j2V

Bijzj

and further assume that Yi(z, u) is monotonically increasing in z for every u 2
UN

and vertex i such that Bij � 0.

Then for some mapping of vertices to clusters, the absolute bias of ⌧dITR(1, 0)
when d is graph cluster randomization is less than or equal to the absolute bias

when d is independent assignment, with a fixed treatment probability p.

▪ Summary: For linear outcomes model, if responses are monotonically 
increasing in treatment, can prove that graph cluster randomization 
reduces bias. 


!

▪ Theorem:


!

!

!

!



RMSE reduction from design
Change in error from clustering, by rewiring probability

Direct effect β
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In simulations on SM/dcSBM networks, up to 60% reduction in RMSE



Bias reduction from analysis
▪ Summary: For independent random assignment design, if responses 
are monotonically increasing or decreasing in treatment, can prove 
that more restrictive specification of treatment has lower bias than 
less restrictive specification (e.g. NTR more restrictive ITR). 


!

▪ Theorem:


!

!

Let gA(·) and gB(·) be vectors of such functions where gAi (·) is more restrictive

than gBi (·) for every vertex i, and let independent random assignment be the

experimental design. A su�cient condition for estimand ⌧ indgA (1, 0) to have less

than or equal absolute bias than ⌧ indgB (1, 0), is that we have monotonically in-

creasing responses or monotonically decreasing responses for every vertex with

respect to z.



RMSE reduction from analysis

…but RMSE can go up considerably: +400%. Or in some regimes: -50%.
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▪ Unbiased ATE estimation unlikely for network experiments

▪ Bias: Reduced a lot by Design/Analysis , under assumptions

▪ RMSE: Still reduced considerably in some regimes, be careful

▪ Papers:


▪ J Ugander, B Karrer, L Backstrom, J Kleinberg. Graph Cluster Randomization: Network 
Exposure to Multiple Universes, KDD‘13.


▪ D Eckles, B Karrer, J Ugander.  Design and analysis of experiments in networks: Reducing 
bias from interference (arXiv)

Conclusions
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