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Predicting discrete choices

• Classic problem: consumer preferences [Thurstone ’27, Luce ’59], 
commuting [McFadden ’78], school choice [Kohn-Manski-Mundel ’76]
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Predicting online discrete choices

How well can we learn/predict “choice set effects”? 
a.k.a. violations of the “independence of irrelevant alternatives” (IIA) 

• [Sheffet-Mishra-Ieong ICML 2012, Yin et al. WSDM 2014]



• Bias towards moderation, compromise effect 

Choice set effects

• [Simonson 1989, Simonson-Tversky 1992,  
 Kamenica 2008, Trueblood 2013]
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 Kamenica 2008, Trueblood 2013]

• Bias towards moderation, compromise effect 

• Similarity aversion



The present work
• Focused on comparison-based functions. 

• Investigate asymptotic query complexity: if an agent makes 
comparison-based choices, how hard to learn their choice function? 

• Assume population is not learning, meaning choice set effects  
are not “transient irrationality”. 

• Several query frameworks:  
• Active queries vs. passive stream of queries 
• Fixed choice function vs. mixture of choice functions 



The present work
• Focused on comparison-based functions. 

• Investigate asymptotic query complexity: if an agent makes 
comparison-based choices, how hard to learn their choice function? 

• Assume population is not learning, meaning choice set effects  
are not “transient irrationality”. 

• Several query frameworks:  
• Active queries vs. passive stream of queries 
• Fixed choice function vs. mixture of choice functions 

• Basic takeaway: comparison-based functions in one dimension  
(still rich!) are no harder to learn than binary comparisons (sorting).  
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Comparison-based choice functions
• Definition: Given a set of alternatives U, a choice function f maps  

every non-empty S⊆U to an element u∈S.
• Example: 
 
 
U:                                                 f(                                        ) =

• Embedding items:
• Consider U as embedded in attribute space, h:U->X 
• For X = ℝ1, h(ui) are utilities: 

• Comparison-based functions: 
• Definition: Choice functions that can be written as comparisons 

(<,>,=) over {h(ui): ui∈S}.

S u

ba dc e

https://en.wikipedia.org/wiki/%E2%84%9D


• In one dimension, comparison-based functions are all  
position-selection functions: select ℓ-of-k.

• Example: k=4, ℓ=2
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• In one dimension, comparison-based functions are all  
position-selection functions: select ℓ-of-k. 

• Example: k=4, ℓ=2

• Selecting 1-of-2 is sorting.
• Focus on k-sets S with fixed k. 
• Position-selection functions exhibit choice set effects.



Query complexity
• Observe sequence of (choice set, choice) pairs (S, f(S)). 
• How many do we need to observe to report f(S) for (almost) all S?



Query complexity
• Observe sequence of (choice set, choice) pairs (S, f(S)). 
• How many do we need to observe to report f(S) for (almost) all S? 

• Active vs. passive queries 
• Active: can choose what k-set S to query next, sequentially. 
• Passive: Stream of random k-sets S. 

• Fixed vs. mixed choice functions 
• Fixed: all queries of same   -of-k function.  
• Mixed: mixture                  of different positions selected. 

`

(⇡1, ...,⇡k)



Query complexity, binary choices
• How does sorting (1-of-2) fit in this query complexity framework? 
• Mixed binary choice functions map to (p,1-p) noisy sorting.

Fixed Mixed

Active
Sorting from 
comparisons 

O(n log n)

Sorting with  
noisy comparisons 
(Feige et al. 1994)  

O(n log n) 

Passive

Sorting in one round  
(Alon-Azar 1988)  

O(n log n loglog n)   ?



Query complexity, k-set choices
• Sorting results translated to position-selection functions:

Fixed Mixed

Active Two-phase algorithm 
O(n log n)

 
Adaptation of two-phase 

algorithm 
O(n log n) 

Passive Streaming model 
O(nk-1 log n loglog n) ?



• Phase 1: find “ineligible alternatives” via a discard algorithm 

Query complexity: active, fixed

`� 1 item(s)k � ` item(s)

b

a
c

d

= ineligible alternatives

S⇤ =

S�2 =

{ }
{ }

f(S) = b

a dc

b
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• Phase 2: Pad a choice set with ineligible alternatives, do binary sort. 
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• Phase 1: find “ineligible alternatives” via a discard algorithm 

• Phase 2: Pad a choice set with ineligible alternatives, do binary sort. 

• O(n) queries in discard algorithm, O(n log n) queries to sort.  
• Only recovers order, not orientation: don’t know if “padded sort” is a 

“max” or a “min”, but not needed to recover f(S) for ever S. 
• Algorithm doesn’t depend on what position is being selected for.

Query complexity: active, fixed
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Query complexity: active, mixed
• Instead of  -of-k, mixture of positions with probabilities                 , 

constant separation.  

• 0: Estimate probabilities of each position by studying a k+1-set closely. 
• 1: Run discard phase O(log n) times, find “max-ineligible alternatives”  
• 2: Can then pad choice set and run a “noisy max” with (max, min, fail) 

outcomes instead of (max, min) outcomes as in (Feige et al. 1994). 
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Query complexity: active, mixed
• Instead of  -of-k, mixture of positions with probabilities                 , 

constant separation.  

• 0: Estimate probabilities of each position by studying a k+1-set closely. 
• 1: Run discard phase O(log n) times, find “max-ineligible alternatives”  
• 2: Can then pad choice set and run a “noisy max” with (max, min, fail) 

outcomes instead of (max, min) outcomes as in (Feige et al. 1994). 

• O(1) queries estimate probabilities, O(n log n) queries in discard 
algorithm, O(n log n) queries to sort. 

• Need to book-keep many failure probabilities, but straight forward.
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Query complexity: passive, fixed
• Passive query model: Poisson process where each k-set enters 

the stream with equal rate α. 
• See a given k-set in interval [0,T] with probability pT.  
• How long an interval [0,T] do we need to observe stream? 

• Phase 1: use queries in [0,T1], with T1  large enough so that  
all items except ineligible alternatives are chosen. 

• Phase 2: Simulate pairwise comparisons using queries where k-2 of 
the elements are ineligible.  



Query complexity: passive, fixed
• Passive query model: Poisson process where each k-set enters 

the stream with equal rate α. 
• See a given k-set in interval [0,T] with probability pT.  
• How long an interval [0,T] do we need to observe stream? 

• Phase 1: use queries in [0,T1], with T1  large enough so that  
all items except ineligible alternatives are chosen. 

• Phase 2: Simulate pairwise comparisons using queries where k-2 of 
the elements are ineligible.  

• For Phase 2 to work, need pT to be O(log n loglog n / n). End up  
seeing ~log(n)/n fraction of all (n choose k) choice sets. 

• For k≥3, proof only works for positions 1<ℓ<k, not ℓ=1 or ℓ=k, 
which breaks our analysis (pT ↛  0).

https://en.wikipedia.org/wiki/%E2%86%9B


Fixed Mixed

Active Two-phase algorithm 
O(n log n)

 
No new difficulties  

O(n log n) 

Passive Streaming model  
O(nk-1 log n loglog n) ?

Query complexity, k-set choices
• Sorting results translated to position-selection functions: 

• Immediate questions: 
• Better algo for passive stream; “sorting in one noisy round”;  

higher-dim comparison functions; distance-comparison.  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Distance-comparison-based choice
• Distance-comparison-based functions  

are comparison functions on the  
set of pairwise distances. 

• Distance-comparison vs. comparison functions are quite different. 

• Comparison functions: 
• Can not express similarity (only order) 

• Distance-comparison functions: 
• Can not maximize or minimize (distances are all internal to set)

comparisondistance  
comparison
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Distance-comparison-based choice
• Distance-comparison-based functions  

are comparison functions on the  
set of pairwise distances. 

• Paper poses many questions about distance-comparison,  
few answers.

• Related to open learning questions for: 
• Crowd median algorithm [Heikinheimo-Ukkonen 2013] 
• Stochastic triplet embedding [Van Der Maaten-Weinberger 2012] 
• Crowdsourced clustering [Vinayak-Hassibi 2016] 
• Metric embedding [Schultz-Joachims 2004].
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Summary
• Inference for comparison-based functions generally not more difficult  

than sorting. 
• Active vs. passive, fixed vs. mixed query complexity frameworks. 

• Open questions: 
• Results for high-dim (EBA?), distance-comparison, RUMs. 
• Learning/non-static agents? 

• Other recent work:
• [Benson et al. WWW’16] “On the relevance of irrelevant alternatives” 
• [Ugander-Ragain, NIPS’16] Markov chain model generalizing BTL/MNL, can violate IIA. 
• [Maystre-Grossglauser ICML’17] For BTL with ~uniform quality, log5(n) independent 

Quicksorts recover exact rank for almost all items. 
• [Peysakhovich-Ugander NetEcon’17] Machine learning adaptation of the Simonson-

Tversky model for contextual utility. 


