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The “wisdom of crowds” dictates that aggregate predictions from a large crowd can be surprisingly accurate,
rivaling predictions by experts. Crowds, meanwhile, are highly heterogeneous in their expertise. In this
work, we study how the heterogeneous uncertainty of a crowd can be directly elicited and harnessed to
produce more efficient aggregations from a crowd, or provide the same efficiency from smaller crowds. We
present and evaluate a novel strategy for eliciting sufficient information about an individual’s uncertainty:
allow individuals to make multiple simultaneous guesses, and reward them based on the accuracy of their
closest guess. We show that our multiple guesses scoring rule is an incentive-compatible elicitation strategy
for aggregations across populations under the reasonable technical assumption that the individuals all hold
symmetric log-concave belief distributions that come from the same location-scale family. We first show
that our multiple guesses scoring rule is strictly proper for a fixed set of quantiles of any log-concave belief
distribution. With properly elicited quantiles in hand, we show that when the belief distributions are also
symmetric and all belong to a single location-scale family, we can use interquantile ranges to furnish weights
for certainty-weighted crowd aggregation. We evaluate our multiple guesses framework empirically through
a series of incentivized guessing experiments on Amazon Mechanical Turk, and find that certainty-weighted
crowd aggregations using multiple guesses outperform aggregations using single guesses without certainty
weights.
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1. INTRODUCTION
In 1907, Francis Galton famously observed that when 787 people at a country fair
were asked to guess the weight of an ox, the median of the guesses (1207 pounds) was
impressively close to the true value (1198 pounds) [Galton 1907b]. The phenomena be-
hind this observation has since come to be known as the “wisdom of crowds,” whereby
aggregations of non-expert estimates are surprisingly accurate, and has been studied
extensively in many disparate contexts [Lorge et al. 1958; Surowiecki 2005].

In this work, we explore how one can harness the heterogeneous uncertainty of
crowds to improve crowd aggregations by complementing the traditional procedure
with an additional request that elicits each individual’s certainty, and make use of
those certainties to usefully weight crowd aggregations. We contribute and analyze
a simple novel mechanism for eliciting uncertainty through a request that is highly
compatible with generic crowd estimation procedures: ask individuals to make multi-
ple simultaneous guesses.
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Our theoretical contribution is to show that under reasonable assumptions on their
beliefs, when individuals are rewarded according to a simple multiple guesses scoring
rule — scoring them in proportion to the accuracy of their closest guess — they are
properly incentivized to spread out their guesses in a manner that usefully reveals the
certainty of their beliefs in well-structured ways. More specifically, we show that if a
population of individuals hold belief distributions that are symmetric, log-concave, and
all belonging to some single location-scale family, then the above scoring rule elicits a
specific set of quantiles for all individuals in the population, quantiles that can be used
to measure interquantile ranges. We then show that these interquantile ranges can be
used to produce weights for both weighted mean and weighted median aggregations
that exhibit favorable statistical efficiencies.

The significance of the wisdom of crowds phenomena is in many ways empirical: the
basic observation that noisy unbiased measurements can be aggregated to form con-
sistent estimators is not surprising, but do non-expert crowds really produce unbiased
samples? Similarly, are people really capable of spreading out their multiple guesses
to minimize their loss according to scoring rules? To evaluate the practical significance
of our theoretical results, we contribute an experimental evaluation of our multiple
guesses scoring rule through a pair of guessing experiments.

We show that not only does our two guesses scoring rule have favorable theoret-
ical properties, it is also empirically performative across a series of guessing games
conducted on Amazon Mechanical Turk. Our theoretical analysis predicts that under
our assumptions, individuals should place two guesses as if reporting a [25%,75%]
confidence interval. We find that responses to our scoring rule are statistically in-
distinguishable from responses under an interval scoring rule that incentivizes and
explicitly asks for [25%,75%] confidence intervals. Furthermore, we find that using
inter-guess ranges to weight aggregations significantly reduces estimation error.

Model of crowd beliefs. Consider an unknown quantity µ of interest, and a popu-
lation of n individuals who are all hold independent uncertain and generally distinct
beliefs regarding µ. In practical settings, µ may be the current population of a city, the
high temperature tomorrow in a specific place, or the weight of an ox at a county fair.
In this work we use a characterization of crowd wisdom built upon the notion of subjec-
tive belief distributions [Wallsten et al. 1997; Vul and Pashler 2008], that individuals
maintain internal probabilistic representations of their beliefs.

We employ a model of belief distributions in crowds based on noisy signals, where
each individual is viewed as possessing a single noisy observation of the unknown
quantity µ of interest. Let each individual make one observation x

i

from the random
variable S

i

= µ + ✏

i

, where µ is constant and the additive noise term ✏

i

is an individ-
ualized zero-mean random variable. In general we assume individuals have different
distributions for ✏

i

, with personalized variances Var[✏
i

] = �

2
i

that are known to them,
modeling their relative knowledge about µ. Meanwhile, we let X1, ..., Xn

be individual
belief distributions, the beliefs about µ held by each individual based on their single
observation from S

i

. In the absence of priors or other assumptions, the mean and vari-
ance of X

i

are then E[X
i

] = x

i

and Var[X
i

] = �

2
i

.
Related work. The study of crowd elicitation and aggregation has been pursued in

many directions, including the use of competitive games, scoring using “gold standard”
questions, reputations, and the psychology as well as sociology of uncertainty.

Rewarding individuals according to a scoring rule forms a non-competitive game,
with the guesses only being evaluated relative to a ground truth, not relative any
other guessers. An alternative to using scoring rules to elicit truthful guesses is to
create a competitive game between multiple individuals, and structure the game in a
manner that incentivizes honest guesses. We do not consider competitive games here,



but this was in fact how the original Galton study was framed [Galton 1907b], a com-
petition that awarded a prize to the individuals with the closest guesses. In the context
of a single guess, a competitive game rewarding the “closest guess” is closely related
to Hotelling’s facility location game [Hotelling 1929] and can have a highly non-trivial
strategy space [Mendes and Morrison 2014]. With many players, the optimal sym-
metric mixed strategy is to draw guesses from the common public prior [Osborne and
Pitchik 1986]. Under a mixture of public and private information, as in the “forecast-
ing contest” model [Ottaviani and Sørensen 2006], it is optimal to over-emphasize pri-
vate information relative public information. It has been shown that aggregating over
competitive crowds with a mixture of public and private information can outperform
aggregating over non-competitive crowds, at least under certain models of information
[Lichtendahl Jr et al. 2013]. It is possible that aggregations from a properly struc-
tured “multiple guesses competition” may be more efficient than aggregation from our
non-competitive scoring rule, but we do not explore this question.

In settings where the goal is to make inferences about unknown quantities, scor-
ing functions generally rely on the use of “gold standard” questions [Shah and Zhou
2014] with known answers that are interspersed with unknown answers. The partic-
ipant does not know which of the questions are gold standard questions, but scoring
rules are applied only to those questions with known answers. A useful strategy in the
complete absence of ground truth knowledge is the so-called “Bayesian Truth Serum”
(BTS) scoring rule [Prelec 2004], which asks agents for their estimate and also for their
estimate of the sample distribution of estimates from other individuals. By rewarding
agents for their knowledge of the estimates of others, the BTS scoring rule is truth-
eliciting under mild assumptions, even when the truth is unknown. An analysis of a
BTS-like multiple guesses rule, or more generally how incentives change if our scoring
rule is evaluated purely relative to other responses of the crowd [Kamar and Horvitz
2012], would be an interesting direction for future research.

In contexts where the same individuals are observed multiple times, a broad range of
traditional strategies for discerning latent reputations become admissible [Dekel and
Shamir 2009]. A burst of literature has recently examined variations on this theme
of identifying “smaller, smarter crowds” in contexts ranging from policy forecasting
[Jose et al. 2013; Budescu and Chen 2014] to sports betting [Goldstein et al. 2014;
Davis-Stober et al. 2014]. Our context differs in that we have no repeated judgements
upon which to judge quality. It would be interesting to study our multiple guesses
framework in a repeated judgement setting, to see how effectively one could infer how
well individuals judge their own certainty, potentially enabling improved aggregation.

Regarding prior investigations into multiple guessing, recent psychology research
has explored the concept of “dialectical crowds within” [Herzog and Hertwig 2009],
showing that when people provide multiple sequential guesses, the average is a better
guess than their first guess. This sequential crowds-within approach does not consider
certainty or weighting schemes, and moreover there is active debate about why the
approach works [White and Antonakis 2013; Herzog and Hertwig 2013]. We feel our
analysis of multiple simultaneous guesses usefully enhances this discussion of “crowds
within”, providing a theory for how multiple guesses are dispersed under our scoring
rule. Regarding the sociology of crowds, we do not consider the potential impacts (neg-
ative or positive) of social interference between individuals [Lorenz et al. 2011; Das
et al. 2013], or how it can possibly be overcome when it is present.

2. ELICITING UNCERTAINTY
In this section we begin by briefly reviewing the theory of proper scoring rules and how
it applies to eliciting a person’s uncertainty, the variance of their belief distribution. We
then use the language of proper scoring rules to present our novel strategy in terms of



multiple guesses, and prove conditions under which it is proper. Throughout this work
we assume all agents are expected utility maximizers; scoring rules for non-expected
utility maximizers [Offerman et al. 2009] are outside the scope of this work.

2.1. Strictly proper scoring rules
From the perspective of an individual in the crowd, their beliefs about µ are described
by a subjective belief distribution X

i

with mean E[X
i

] = x

i

and variance Var[X
i

] = �

2
i

.
Our goal in this section is to elicit x

i

and �

2
i

by rewarding the individual using an
incentive-compatible scoring rule based on their responses to one or more questions.

Informally, a strictly proper scoring rule for a property of a distribution is a mecha-
nism that correctly incentivizes individuals to truthfully report their beliefs regarding
that property, with a uniquely optimal answer. For example, the Brier scoring rule for
a response r for a belief distribution X is given by SBrier(r;X) = 2rX � r

2
, and is a

strictly proper scoring rule for the expectation of a distribution [Brier 1950; Savage
1971]. By convention we view score functions as loss functions, where a lower score is
better. The score is a function of a random variable X, and so individuals aim to choose
r to minimize the expected value of their score, minimizing their expected loss.

More formally, a scoring rule S(r;X) is said to be strictly proper for a response statis-
tic r (here, the expected value) when, for a person holding beliefs about the distribution
of X, the expected score of reporting E[X] under their beliefs is the best possible ex-
pected score:

E
X

[S(E[X];X)]  E
X

[S(r;X)], 8r,
with equality if and only if r = E[X].

Beyond eliciting expectations of distributions, an extension of the Brier rule for
higher moments also provides a strictly proper scoring function for jointly eliciting
the first k moments of a distribution [Frongillo et al. 2015]:

SBrier,k(r1, ..., rk;X) =
P

k

j=1 2rjX
j � r

2
j

. (1)

This Brier rule for higher moments can be used to elicit a person’s joint beliefs about
the mean and variance of a distribution by eliciting {E[X],E[X2]}, which can be trans-
formed to the mean and variance since {E[X],Var[X]} = {E[X],E[X2]� E[X]2}.

While Brier rules are provably strictly proper, incentive compatible scoring rules are
not a sufficient condition for empirically accurate predictions in practice, and may not
even be necessary. Individuals have been shown experimentally to be overconfident
even under incentive compatible mechanisms [Keren 1991]. Different mechanisms at-
tempting to access the same information can be very differently calibrated empirically.
For example, under different incentive compatible framings, individuals may or may
not be able to reliably assess higher moments of distributions [Goldstein and Roth-
schild 2014]. Simply because a mechanism is incentive compatible does not mean that
individuals will understand it, and a richer understanding of human computation has
a great deal to contribute to empirical mechanism design. We therefore seek a simple
scoring rule that makes an intuitive request under transparent incentives.

2.2. The multiple guesses scoring rule for quantiles
Our proposed strategy for eliciting the mean and variance of belief distributions is to
solicit “multiple guesses” r1, ..., rk, and score the guesser based on the absolute devia-
tion between the true value and their closest guess:

SMG,k({r1, ..., rk};X) = min{|r1 �X|, ..., |r
k

�X|}.
Both the request (make multiple simultaneous guesses) and scoring (minimize the
error of your closest guess) are simple to communicate and understand. Intuitively,



guesses that are close together represent certainty, while guesses that are far apart
represent uncertainty. We show that under reasonable assumptions the scoring rule is
in fact strictly proper, and the responses reveal sufficient information for performing
certainty-weighted crowd aggregation.

More specifically, we show that for log-concave belief distributions, soliciting k

guesses and offering rewards based on the absolute deviation of the closest guess is
a strictly proper scoring rule for k quantiles of the belief distribution. The quantiles
elicited do not have a simple form in general, but we show that they must be the same
fixed quantiles across all distributions within the same location-scale family. In the
special case of symmetric log-concave distributions and k = 2, we show that the quan-
tiles do have a simple form: {p1, p2} = {F�1

X

(1/4), F�1
X

(3/4)}, where F

�1
X

is the quantile
function of the belief distribution X.

To compare this rule to other known proper scoring rules for quantiles, it is known
that quantiles are elicitable for general distributions (not merely log-concave distribu-
tions) under more complex scoring rules [Lambert et al. 2008]. An example of a strictly
proper scoring rule for jointly eliciting the quantiles {F�1

X

(↵1), ..., F
�1
X

(↵
k

)} of a general
distribution X, with all ↵

i

2 (0, 1), is [Gneiting and Raftery 2007]:

Squantile,k(r1, ..., rk;X) =
P

k

j=1(X � r

j

)1[X � r

j

]� ↵

j

r

j

. (2)

The related interval scoring rule is a known strictly proper scoring rule for two sym-
metric quantiles {F�1

X

(↵2 ), F
�1
X

(1� ↵

2 )}, defined as:

Sinterval(`, u;X) = (u� `) + 2↵�1(`�X)1[X < `] + 2↵�1(X � u)1[X > u]. (3)

This interval scoring rule effectively asks for a confidence interval [`, u], and penalizes
outcomes that fall outside the interval while concurrently penalizing a wide interval.
For the case of ↵ = 1/2, the interval score elicits {F�1

X

(1/4), F�1
X

(3/4)}, the same quan-
tiles as our two guesses scoring rule for symmetric log-concave distributions. While
the two guesses scoring rule is only strictly proper for log-concave distributions, it is
intuitively simpler than the interval scoring rule, for which the simplest description is
arguably “your score is the width of your interval, and if the observation falls outside
your interval, add on four times how far outside it falls.” In the experimental portion of
this work, we evaluate the relative empirical performance of the two guesses scoring
rule and the interval scoring rule when targeted to elicit the same two quantiles.

2.3. The properness of multiple guesses
We now present our main result, the strict properness of our multiple guesses scoring
rule for eliciting specific quantiles of any log-concave uncertainty distribution, where
log-concavity is a sufficient but not necessary condition. We also present a second
proposition regarding additional results for symmetric log-concave distributions.

PROPOSITION 2.1. For any log-concave distribution X, the k guesses scoring rule

SMG,k({r1, . . . , rk};X) = min{|X � r1|, . . . , |X � r

k

|},
is strictly proper for some set of points {p1, . . . , pk}, meaning

E
X

[SMG,k({p1, ..., pk};X)]  E
X

[SMG,k({r1, ..., rk};X)]

for all {r1, . . . , rk}, with equality if and only if p
i

= r

i

, 8i. For all k, the ordered quantiles
of {p1, . . . , pk} are fixed for all distributions within the same location-scale family.
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Fig. 1. Left: for the two guesses scoring rule, the unique optimal response set for a zero-mean Normal dis-
tribution is {�0.674�, 0.674�}. Right: as an example of how even symmetric and unimodal non-log-concave
distributions may not have a unique optima, for the zero-mean double Weibull distribution [Mease et al.
2004] there are two asymmetric optima {�d, b} and {�b, d} that both outperform the best symmetric an-
swer {�c, c}.

PROPOSITION 2.2. For any symmetric log-concave distribution X the unique quan-
tiles are symmetric, meaning p

i

= F

�1
X

(q) , p

k�i+1 = F

�1
X

(1 � q) for i = 1, ..., k, where
indices are ordered. For k odd, the median response is the median of X, p(k+1)/2 =

F

�1
X

(1/2). For k = 2, {p1, p2} = {F�1
X

(1/4), F�1
X

(3/4)}.

Log-concave distributions include the Normal, Laplace, Logistic, Gamma, and Uni-
form distributions. Location-scale families include the Normal distribution family, the
Laplace distribution family, the Uniform distribution family, and any elliptical distri-
bution family. The proof of the uniqueness in Proposition 2.1 is an application of a
known result from the literature on optimal quantizers; establishing that the quan-
tiles are fixed within a location-scale family requires some basic novel analysis. We
first provide a discussion that usefully frames the results before giving the proofs.

Notice that the expectation of the multiple guesses score function can be written as:

E
X

[min{|X � r1|, ..., |X � r

k

|}] =
R r1+r2

2

�1 |x� r1|fX(x)dx+ ...+
R1

rk�1+rk
2

|x� r

k

|f
X

(x)dx,

where we’ve assumed, without loss of generality, that r1  . . .  r

k

are ordered. This
objective function is precisely the objective function of the k-median problem for a con-
tinuous univariate distribution, the task of determining k ordered points r1, ..., rk that
minimize the expected absolute deviation under that distribution. Therefore, condi-
tions under which the continuous k-medians problem has a unique optimal set are
conditions under which we know that our score function elicits a unique response set.
Slight variations on the k-medians problem have been studied across a broad range
of literatures: it is a variation on the facility location problem in operations research
[Shmoys et al. 1997], the Fermat-Weber problem in geometry [Fekete et al. 2005], and
the optimal quantizer problem in signal processing [Dalenius 1950; Fleischer 1964].

For k-medians problems in general — beyond univariate log-concave distributions —
there can be multiple globally optimal sets that are equivalently optimal, meaning that
a rational individual with beliefs that are not log-concave could be equally justified in
returning any one of several globally optimal sets. Figure 1 presents an example of
how uniqueness can fail in general even for symmetric unimodal distributions.

There are many known sufficient conditions for uniqueness for the optimal quan-
tizer problem, of which the univariate k-medians problem is a special case, but they
are not neatly nested. Results can generally be divided into sufficient conditions on the
probability distribution and sufficient conditions on the loss function, where the loss
function for k-medians is simply absolute deviation. In 1964, Fleischer gave an anal-
ysis of Lloyd’s algorithm for the k-means problem (quadratic loss [Lloyd 1982]), and
found that for log-concave univariate distributions the optima of the objective function
is unique, and Lloyd’s algorithm finds that optima [Fleischer 1964]. After Fleischer,



log-concavity was shown to also be a sufficient condition for uniqueness of local op-
tima for any symmetric convex loss function L(z) where L(z) = 0 iff z = 0 [Trushkin
1982; Kieffer 1983], which includes the absolute deviation loss function used in the
k-medians objective function. Recently, even weaker conditions have been given, show-
ing that uniqueness holds for log-concave distributions under loss functions that are
slightly more general than convex [Delattre et al. 2004; Cohort 2000]. These conditions
are arguably the broadest concise sufficient conditions known in the literature, though
it is also known that log-concavity is not a necessary condition for uniqueness: other
methods have shown uniqueness for e.g. Pareto distributed uncertainty (under convex
loss functions), which is not a log-concave distribution [Fort and Pagès 2002].

We now state a special case of the general result of Cohort [Cohort 2000], for which
the strict properness of our multiple guesses score function is a corollary.

PROPOSITION 2.3. For the absolute deviation loss function L(x) = |x| and f

X

(x)
log-concave, there exists a local minima r1, ..., rk for the expected loss

E
X

[min{L(X � r1), ..., L(X � r

k

)}],

for any k, and it is unique.

PROOF. See any of [Trushkin 1982; Kieffer 1983; Cohort 2000], with Cohort provid-
ing the most general result.

Using this uniqueness, we now prove the results presented in Proposition 2.1 and
Proposition 2.2.

PROOF (OF PROPOSITION 2.1). By Proposition 2.3, we know the optima exists and
is unique. For general k, there is no simple expression for a universal set of quantiles,
as the quantiles can be distribution-dependent. We now show that for a fixed k, the
same quantiles are elicited for all distributions belonging to the same location-scale
family. For general k, the stationary conditions of the expected loss g({p1, ..., pk};X) =
E
X

[SMG,k({p1, ..., pk};X)] are:
8
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By setting q
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= F

X

(p
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), 8i, we have the following system of equations:
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(
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For every distribution X (with location parameter µ and scale parameter �) in a
location-scale family F , we can transform the cumulative distribution function and
its inverse to a standardized distribution Z 2 F (with location 0 and scale 1) using the
properties F

X

(p) = F

Z

(p�µ

�

) and F

�1
X

(q) = µ+�F

�1
Z

(q). By substitution, we can reduce
the system of equations to only depend on properties of Z, obtaining:
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Thus, for all distributions in the same location-scale family, the points p1, . . . , pk must
have the same quantiles q1, . . . , qk as the quantiles for the standard distribution Z of
the family F .

PROOF (OF PROPOSITION 2.2). For X symmetric log-concave, existence and
uniqueness again follow from Proposition 2.3. The symmetry p

i

= F

�1
X

(q) , p

k�i+1 =
F

�1
X

(1 � q) for i = 1, ..., k follows from the uniqueness of the optimal point set: if the
points were not symmetric then a reflection of the point set about the median would
have the same expected loss, a contradiction of uniqueness. This result in turn gives
us that the median F

�1
X

(1/2) belonging to the optimal set for k odd.
Meanwhile for k = 2, the explicit optima {p1, p2} = {F�1

X

(1/4), F�1
X

(3/4)} can be
easily derived, and here we verify by ansatz that {F�1

X

(1/4), F�1
X

(3/4)} satisfy the sta-
tionary conditions of the expected loss for all symmetric X:

(
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X

(1/2) = [F�1
X

(1/4) + F

�1
X

(3/4)]/2.

This last condition holds for all symmetric distributions X, while log-concavity contin-
ues to act as a sufficient condition for uniqueness.

Proposition 2.3 establishes that the unique global optima is in fact the only local
optima. The existence of only a single local optima is a strong statement about com-
putability that relates closely to human reasoning and the capabilities of individuals
with so-called “bounded rationality” [Simon 1972]. The uniqueness of the local optima
follows not from convexity, as the objective function is not convex, but rather from more
subtle uniqueness arguments such as the Mountain Pass Theorem [Courant 1950].

Having established that our multiple guesses scoring rule can be used to elicit spe-
cific sets of quantiles, in the next section we will establish that interquantile ranges —
simply taking the gap between any two quantiles — can provide sufficient information
for constructing weights in weighted wisdom of the crowd aggregation settings.

3. AGGREGATION WITH UNCERTAINTY
In this section, we study certainty-weighted aggregation strategies for aggregating
the beliefs and uncertainties of a population with regard to an unknown quantity. In
particular, we derive certainty-weighted estimators that outperform their unweighted
analogs in terms of their asymptotic relative statistical efficiency in various settings.

Recall that we are considering a population of individuals who each hold a single ob-
servation x

i

from a differently corrupted signal S
i

= µ+ ✏

i

, with the goal of estimating
µ. We generally assume all the observations x

i

and variances of the noise distributions
Var[✏

i

] = �

2
i

are known to us, having successfully elicited them from the individual
belief distributions using the strategy outlined in the previous section. From the per-
spective of an aggregator, we thus have n observations x

i

from the differently corrupted
signals S

i

= µ+ ✏

i

, and our goal is to estimate µ.
The two main aggregation strategies we consider are the certainty-weighted mean

and the certainty-weighted median of the population. In Francis Galton’s original 1907
study of weight guessing, which did not study certainty, Galton strongly advocated ag-
gregation using the sample median, since the sample mean “would give a voting power
to cranks in proportion to their crankiness” [Galton 1907a]. In more formal parlance,
basic results from robust statistics that would have been known to Galton [de Laplace
1820] dictate that the asymptotic variance of the sample median is 1/(4f

X

(0)2n), while
the asymptotic variance of the sample mean is E[X2]/n. As a result, the median is more



efficient than the mean if and only if 4f
X

(0)2 > E[X2]�1. For normal distributions the
mean is more efficient, while for distributions with heavy tails, such as populations
containing cranks, the median is more efficient.

A key difference between what Laplace was studying and the crowd context we are
studying is that our population of observations x

i

do not come from a single distri-
bution, but instead from a family of distributions with a shared location parameter.
How can we incorporate both the elicited observations and the elicited variances to
maximize our efficiency?

To answer this question, we first derive maximum likelihood estimators under
known heterogeneous variances for two basic families of noise distributions: Normal
distributions and Laplace distributions. We observe that the variance-weighted mean
is the MLE for the Normal family, while the standard deviation-weighted median is the
MLE for the Laplace family. We then establish that for families of distributions that
belong to the same location-scale family, the variance in the weighting scheme can be
replaced by any interquantile range, enabling us to employ the quantiles deduced in
the previous section. Lastly, we consider several contamination models in the style of
Tukey [Tukey 1960], where some observations have much greater variance than oth-
ers, and observe that the weighted median is the most efficient of our estimators in
contaminated contexts.

3.1. Maximum likelihood estimators: weighted mean and weighted median
We now consider the cases of Normal family uncertainty and Laplace family uncer-
tainty, deriving the optimal weighting schemes for maximum likelihood estimation
when the noise distributions come from these families.

We first consider Normal uncertainty, where all the individual signals S

i

= µ + ✏

i

have noise terms ✏

i

that are N(0,�2
i

). For this case we have the following proposition.
PROPOSITION 3.1. Given x1, . . . , xn

drawn from S1, . . . , Sn

where S

i

⇠ N(µ,�2
i

) in-
dependently with �

2
i

known 8i, the MLE for µ is given by µ̂

N

= (
P

n

i=1
xi

�

2
i
)/(

P
n

i=1
1
�

2
i
).

PROOF. The log-likelihood function is simply:

`(µ; {x
i

}n
i=1, {�i

}n
i=1) = �

P
n

i=1 ln(�i

)�
P

n

i=1
(xi�µ)2

2�2
i

, (4)

which makes the estimator µ̂

N

= (
P

n

i=1
xi

�

2
i
)/(

P
n

j=1
1
�

2
j
).

Intuitively, this estimator discounts estimates from individuals who are uncertain and
focuses weight on those who are certain. When the uncertainties are homogeneous
(�

i

= �, 8i), the above estimator µ̂

N

reduces to a homogeneous estimator µ̂

N,hom

=
1
n

P
n

i=1 xi

, which is independent of �, even when � is known. As a result, collecting
information about individual uncertainties would be a waste of surveying resources if
the uncertainties were homogeneous, as it would not figure in the eventual estimator.

What if the uncertainties �

i

were heterogeneous and we incorrectly assumed they
were homogeneous? The following proposition shows that if a population has hetero-
geneous uncertainty, then the heterogeneous estimator dominates the homogeneous
estimator, in the sense that it always has strictly lower variance.

PROPOSITION 3.2. Given x1, . . . , xn

drawn from S1, . . . , Sn

where S

i

⇠ N(µ,�2
i

) in-
dependently with �

2
i

known 8i, the variances of the homogeneous and heterogeneous
estimators µ̂

N

and µ̂

N,hom

are:

Var[µ̂
N,hom

] = 1
n

2

P
n

i=1 �
2
i

, Var[µ̂
N

] = 1Pn
i=1

1
�2
i

, (5)

where Var[µ̂
N

]  Var[µ̂
N,hom

], with equality iff �
i

= �, 8i.



PROOF. For the two estimators, we have

Var[µ̂
N,hom

] = 1
n

2

P
n

i=1 Var[X
i

] = 1
n

2

P
n

i=1 �
2
i

, Var[µ̂
N

] =

Pn
i=1

1
�4
i

Var[Xi]

[
Pn

i=1
1
�2
i
]2

= 1Pn
i=1

1
�2
i

.

The inequality Var[µ̂
N

]  Var[µ̂
N,hom

] follows from Cauchy-Schwartz, and is strict if
and only if the vectors (�2

1 , . . . ,�
2
n

) and ( 1
�

2
1
, . . . ,

1
�

2
n
) are linearly independent. Equality

therefore requires that for some constant c, �2
i

= c/�

2
i

, 8i. Since �

2
i

is non-negative, this
is true if and only if �

i

= �, 8i.

As a corollary of this proposition, when a population has heterogeneous Gaussian
uncertainty and there are a few disproportionately uncertain individuals in the crowd,
the relative efficiency of the weighted vs. unweighted estimator would be enormous,
highlighting the value of knowing uncertainties when heterogeneity is rampant.

We next consider Laplace uncertainty, where all the individual signals S

i

= µ + ✏

i

have noise terms ✏

i

that are Laplace(0,�2
i

).

PROPOSITION 3.3. Given x1, . . . , xn

drawn from S1, . . . , Sn

where S

i

⇠
Laplace(µ,�2

i

) independently with variance �

2
i

known 8i, the MLE for µ is given
by the weighted median µ̂

L

= argmin
m

P
n

i=1
1
�i
|x

i

�m|.

PROOF. The log-likelihood function is simply:

`(µ; {x
i

}n
i=1, {�i

}n
i=1) = �

P
n

i=1 ln(�i

)�
p
2
P

n

i=1
1
�i
|x

i

� µ|. (6)

By definition a median of a set of values {x1, ..., xn

} is a value, not necessarily unique,
that minimizes the absolute deviation of the set, argmin

m

P
n

i=1 |xi

� m|. Analogously,
the weighted median of the set {x1, ..., xn

} with corresponding weights {w1, ..., wn

} is
a value, not necessarily unique, that minimizes the weighted absolute deviation of
the set, argmin

m

P
n

i=1 wi

|x
i

� m|. It is immediately clear that the weighted median
maximizes the log-likelihood in (6).

It is important to highlight that the weights used for the weighted mean of the
Normal family are not the same weights as those used in the weighted median of
the Laplace family: the former uses inverse variance, while the latter uses inverse
standard deviation.

3.2. Weights from interquantile range
We now show how we don’t need to know the actual variances �2

i

or standard deviations
�

i

in order to correctly weight the mean or median: because of cancellations in the
estimators, any measure of uncertainty that is uniformly proportional to the variances
or standard deviations of a family of distributions can be used to weight the mean or
median estimator, respectively, to achieve the same statistical efficiency.

We begin with the following basic observation: for any unscaled uncertainty mea-
sures s

i

= c�

2
i

, with c constant 8i, the weights w

s

i

= (1/s
i

)/(1/
P

n

k=1 sk) are exactly
equal to the variance weights w

�

2

i

= (1/�2
i

)/(1/
P

n

k=1 �
2
k

). An analogous statement is
clearly also true for uncertainty measures proportional to the standard deviation.

This observation has two practically important consequences for our work. First,
if people are uniformly biased in their estimate of their certainty (e.g. they are uni-
formly overconfident) we see it will not impact the quality of our estimator. Second, it
implies that eliciting any response with a known transformation to a quantity that is
proportional to the variance (or standard deviation) can serve as an equally accurate
weight for weighted mean (or weighted median) aggregation. In particular, we now



show how within any family of distributions that constitute a location-scale family,
any interquantile range is proportional to the standard deviation of that distribution.

PROPOSITION 3.4. For any random variable X with E[X] = µ < 1 and Var[X] =
�

2
< 1 with a distribution belonging to a location-scale family F , any interquantile

range IQR(X; p, q) = F

�1
X

(p)�F

�1
X

(q), with p and q fixed, is proportional to the standard
deviation,

IQR(X; p, q) = cF (p, q)
p

Var(X).

The constant cF (p, q) depends only on the family F of X but not the specific distribution.

PROOF. Let Z be a random variable with the “standard” distribution of the family
F , i.e. location 0 and scale 1. Then for any random variable X with a distribution
in F and E[X] = µ, Var[X] = �

2, a basic property of location-scale families is that
F

�1
X

(p) = µ+ �F

�1
Z

(p), 8p 2 (0, 1). We therefore have that:

IQR(X; p, q) = µ+ �F

�1
Z

(p)� µ� �F

�1
Z

(q) = (F�1
Z

(p)� F

�1
Z

(q))�,

where cF (p, q) = (F�1
Z

(p) � F

�1
Z

(q)) is a constant that depends only on the family and
the fixed values of p and q.

Thus, for populations where all belief distributions come from the same location-
scale family, weighting by any IQR is equivalent to weighting by the standard devi-
ation, and weighting by any squared IQR is equivalent to weighting by the variance.
Note that this does not apply if individuals have belief distributions that belong to
different location-scale families, since the constants can be different. For the Normal
distribution family, cN = 2

p
2Erf�1(1/2) ⇡ 1.349 while for the Laplace distribution

family cL = ln(2)
p
2 ⇡ 1.386.

3.3. Contamination models and robustness
Thus far we have seen that we can elicit quantiles and subsequently use interquantile
ranges to perform certainty-weight aggregation. We now investigate the robustness of
the two strategies we’ve presented: weighted-mean and weighted-median aggregation.

In a seminal series of papers, Tukey [Tukey 1960] examined the robustness of es-
timators to outliers by considering a framework where a set of samples is presumed
to come from a certain distribution, but is in fact “contaminated” with samples from
another distribution with much higher variance. Typically this contamination model
framework consists of a mixture of a primary standard Normal distribution, with sam-
ples from N(0, 1), and a contaminating distribution, with samples from N(0, b), where
b is a parameter controlling the variance of the contamination. The mixture proportion
is typically fixed at 80% primary samples / 20% contamination samples, providing a
single parameter (the contamination variance b) to guide an examination of how noisy
outliers can effect the relative efficiency of different estimators.

In Figure 2 we examine such a contamination model, showing the variance of dif-
ferent estimators based on 50 total samples from the mixture model, averaged over
100,000 iterations. In this first panel it is assumed that the identity of the contamina-
tors is known, i.e. all individuals accurately represent their different certainties. In the
second panel the identity of 10% of the contaminators is misattributed, meaning that
10% of the low-certainty weights are attributed to high-certainty individuals, and 10%
of the low-certainty individuals are given high-certainty weights. In the third panel,
the low-certainty weights are randomly attributed across the population.

From this analysis we observe that the efficiency of our weighted estimators is ro-
bust to identifiable contamination, assuming uncertain guessers say they’re uncertain.
If individuals are mischaracterizing their certainty, however, the efficiency gains are
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Fig. 2. Estimators variance for contamination models with 100 samples. Left: a contaminated Normal dis-
tribution. Center and Right: the same contamination model with partially misattributed weights. Dashed
lines indicate variance under uniform certainty.

relatively modest. If the certainty weights are wildly misattributed then the variances
for the weighted estimators can be larger than for the naive unweighted estimators.

3.4. From guesses to estimates
We conclude our theoretical contribution with a practical summary of how the various
components of our results assemble guesses to form certainty-weighted aggregations.
We continue to assume individuals hold symmetric log-concave belief distributions all
from the same location-scale family.

For each individual i = 1, ..., n we obtain a set of guesses {gi1, ..., gi
k

}, and our goal is
to assemble an estimate of the location, µ̂

i

, and of the scale, ŝ
i

, for some s

i

/ �

i

. For
symmetric distributions the location can clearly be obtained as the midpoint of any two
symmetric quantiles, while for the scale we’ve previously established in Proposition
3.4 that the scale can be obtained from any interquantile range. For k = 2 guesses
this presents a strategy for assembling individual estimates from their guesses, µ̂

i

=
1
2 (g

i

1+g

i

2) and ŝ

i

= |gi1�g

i

2|, allowing us to use the following two estimators to certainty-
weight our wisdom of the crowd aggregation:

µ̂mean = 1Pn
j=1

1
ŝ2j

P
n

i=1
µ̂i

ŝ

2
i
, µ̂median = M

w

({µ̂
i

}n
i=1; {1/ŝi}ni=1).

For k � 3 guesses, individual estimation can become more complicated. When each
individual provides three or more guesses, we are presented choices in how we choose
to assemble µ̂

i

and ŝ

i

. We would be justified in basing ŝ

i

on any fixed quantile gap. For
µ̂

i

we would be justified in using the overall guess mean, or even the mean of any pair
of symmetric quantiles. For odd k we would also be justified in using the median guess
g(k+1)/2 as the individual’s µ̂

i

. We briefly consider these individual-level choices from
an empirical perspective, as given in the next section.

4. GUESSING EXPERIMENTS
To evaluate the empirical performance of our multiple guesses scoring rule, we imple-
mented an online estimation game for dot guessing we called the Dot Guessing Game,
similar to previous dot guessing designs [Horton 2010], and recruited 400 participants
from Amazon Mechanical Turk to play the game in various configurations. As a gen-
eral premise, participants were presented a series of images with a large number of
dots, see Figure 3, and asked to guess the number of dots in each of the images. Each
user started with a tutorial explaining the game, after which they were presented
with an initial allotment of points. Once the game began, different scoring rules (the
variable condition of the experiment) were used to deduct points based on the user’s
performance on each image. The tutorial explained the scoring rules to participants,
and that they would receive a monetary reward at the end of the game relative to the



amount of points they had remaining. A fixed set of images were generated for each
game, with dot counts distributed exponentially over a range of 25 to 250 dots. There
was no time limit for how long someone could spend on a single image. At the end of
the game, monetary bonuses were awarded to participants that had points remaining.

The task of guessing the number of dots in images was chosen for several reasons.
Previous wisdom of the crowd experiments have often studied trivia questions [Lorenz
et al. 2011], but because our study was run in an uncontrolled online setting with
monetary rewards, it was important that the questions not be easily answered based
on internet search results. Secondly, because Amazon Mechanical Turk recruits users
from all around the globe, we also wanted to ensure that our questions were not related
to any specific cultural context. Dot counting has been previously used in other wisdom
of the crowd experiments [Das et al. 2013], and deserves consideration as a useful
“model organism” for crowd aggregation research [Horton 2010].

We conducted two experiments using our Dot Guessing Game platform, each de-
ployed to a population of 200 participants, to empirically evaluate the elicitation and
estimation strategies presented in this work. In our first experiment, we investigated
the performance of the multiple guesses scoring rule by dividing the game into three
sections, configured under a 1-, 2-, and 3-guess scoring rule. A new tutorial introduced
each section to explain and demonstrate each scoring rule. In our second separate ex-
periment, we used a design involving two sections to investigate the performance of
the two guesses scoring rule as compared to the interval scoring rule. Again a new
tutorial introduced each section to explain and demonstrate each scoring rule.

Feedback was provided to participants after each image was submitted in both ex-
periments. The feedback displayed the error, the correct answer, and the participant’s
current score, allowing him or her to track their progress throughout the game. The
feedback showed the calculations that went into the deduction to ensure the user knew
how they were losing points. The order of the images and the order of the sections were
randomly assigned for each user.

Our two experiments were designed to address specific questions. For the multiple
guesses scoring rules, did the additional information elicited by the additional guesses
result in more accurate estimates of the underlying quantity in practice? When elicit-
ing 3 guesses, how often are the guesses symmetrically positioned about their median?
Do responses under the two guesses scoring rule bear any semblance to a [25%, 75%]
confidence interval, in terms of calibration? How do the two guesses compare to the
responses given under the interval scoring rule? We now evaluate these questions,
discussing the two experiments in detail.

Multiple Guesses Experiment. In this experiment, the game was split into 3 sec-
tions, presented in a random order. In each section, participants were given 1, 2, or 3
guesses for each set of 12 images, where the first 2 images were tutorial images. Users
were not allowed to input the same guess more than once per image (e.g., they could
not submit “100” and “100” as their two guesses for an image). After each image, the
user was penalized based on the distance of their closest guess to the actual number
of dots present, as demonstrated during a tutorial and explained through continuous
feedback between images.

The task was designed to take less than 10 minutes, and users were paid a base rate
of $0.50 for participating, plus a bonus based on their score. Each participant started
the game with 500 points, which were converted to bonus payments at the end of the
game at a conversion rate of $0.01 per 10 points. Of 200 participants, 171 finished with
points, receiving an average bonus of $0.20. Our main analysis and statistical tests are
based on the performance of these 171 participants who finished with points, ensuring
that they were properly incentivized by the scoring rules throughout the game (having
not run out of points).



Fig. 3. Experimental results for 1- and 2-guess responses. Left: an image from the game, with 79 dots. Cen-
ter: bootstrapped distributions of mean and median estimators for the 1-guess (red) and weighted 2-guess
(blue) responses for the 79 dot image. Right: ratios of mean squared error (MSE) for bootstrapped popula-
tion of median and mean estimators. The shaded region indicates dot counts where an “integer constraint”
had a pronounced effect, see text. Ratios below 1.0 indicate the weighted 2-guess MSE is lower than the
unweighted 1-guess MSE.

In Figure 3 we see the main results of this experiment. The left panel shows a sam-
ple image with 79 dots. The central panels show a distribution of estimators based on
a sample size of 47 participants making guesses about this image with 79 dots, boot-
strapped with replacement from the participants who saw this image instance as a “1
guess” question vs. the participants who saw this image instance as a “2 guess” ques-
tion. The fixed sample size for each estimator, 47, was set by the size of the smallest
population across all (image, scoring rule) exposure pairs. The bootstrapped distribu-
tion of 2-guess median estimates has less variance than the 1-guess median estimates,
while for mean estimates the 2-guess distribution is significantly less biased but ex-
hibits roughly equivalent variance.

In the right panels of Figure 3, we show the relative mean squared error (MSE) for
bootstrapped populations of 10,000 estimates from each estimator, for each image. The
game was run with 30 different images, and overall, we see that weighted medians
based on 2 guesses generally performs significantly better than unweighted medians
based on 1 guess responses, with relative MSEs well below 1.0.

We also observe a clear trend, where the 2-guess median MSE was very high (rela-
tive to the 1-guess median MSE) when there were very few dots. We note that this is an
artifact of the request being easy, giving participants high certainty, and the answers
being required to be integers; for example, if a participant is very certain that there are
27 dots in the image, they are forced to choose between answering {26, 27} or {27, 28}.
Our estimators interpret such beliefs as centered at 26.5 or 27.5, yielding few or no
belief distributions that are centered at 27. No 1-guess median can be anything other
than an integer, which makes a comparison of the median MSEs somewhat unfair in
high-certainty scenarios. To avoid this artifact, we focus our statistical tests on images
with more than 50 dots, where there was a notable jump in general uncertainty among
users.

The reductions in MSE are significant: the one-sided p-value for a pairwise ratio t-
test of the 2-guess median MSE vs. 1-guess median MSE is p = 0.0003, while for the
mean estimators the p-value is p < 0.0001. For completeness, when all 200 participants
are included, instead of just the 171 who finished with points, the median and mean
estimator p-values are p = 0.012 and p = 0.129, respectively. This suggests that our
results are not robust to participants who “aren’t playing the game,” and complemen-



Fig. 4. Experimental results for 3-guess responses. Left: symmetry of gaps in 3-guess triplets. Right: ratios
of the mean squared error (MSE) for bootstrapped population of differently configured 3-guess weighted
median estimators, compared to a 2-guess MSE. The 3-guess MSE does not vary much between different es-
timator configurations, and is not clearly better or worse than the 2-guess MSE. The shaded region indicates
dot counts where an “integer constraint” effect is suspected, see text.

tary approaches to ensuring worker quality are still advisable in highly heterogeneous
crowds such as the Mechanical Turk general population. A possible estimation-based
approach, not explored, would be to Winsorize the weights [Hastings et al. 1947].

Next, Figure 4 examines the behavior of participants when they were asked to make
3 guesses. In the left panel we study the symmetry of the guesses: by ordering the
three guesses as (g

min

, g

mid

, g

max

), we compare the difference between g

max

� g

mid

and
g

mid

� g

min

, finding that 48.2% of participants positioned their three guesses symmet-
rically about their middle guess, with few triplets distributed with large asymmetries.
In the right panel, we evaluate the ratio of MSEs for estimators bootstrapped from the
participants who were asked for three guesses compared to guesses from those asked
for two guesses. We consider both g

mid

and ḡ = 1
3 (gmin

+ g

mid

+ g

min

) as individual
location estimates, while for weights we use g

max

� g

min

. Estimators weighted by sam-
ple standard deviation

pP
i

(g
i

� ḡ)2, not shown, were nearly indistinguishable from
estimators weighted by g

max

� g

min

. This indistinguishability is to be expected since
for three symmetric guesses the standard deviation is proportional to the max-min
gap. Results from this panel are inconclusive; there is no clear benefit or drawback
to 3-guess over 2-guesses, except possibly for low dot counts where the request for 3
guesses appears to avoid the integer constraint effect seen in 2-guess requests. A more
detailed investigation of higher guess-count elicitation is left as future work.

Interval Comparison Experiment. In our second experiment, the game was con-
figured with two sections, presented in a random order, where one section asked par-
ticipants for 2 guesses for every image, analogous to the 2 guesses section from the
previous experiment, and the other section asked for a [25%,75%] confidence inter-
val regarding the number of dots believed to be in each image. Participants were not
allowed to provide a confidence interval with a width of 0. In the interval section,
points were deducted according to the interval scoring rule discussed in Section 2.2.
The magnitude of the 2-guess scoring rule was scaled up to deduct 5 times the error (to
the closest guess) in points, providing approximately the same expected point penalty
per image as the interval rule (in theory, under optimal performance with Gaussian
belief distributions).

The task was again designed to take less than 10 minutes, and users were paid a
base rate of $0.50 for participating, plus a bonus based on their score. Each partici-
pant started the game with 2000 points, which were converted to bonus payments at
the end of the game at a conversion rate of $0.01 per 50 points. Of 200 participants,
149 finished with points, receiving an average bonus of $0.14. Our main analysis and
statistical tests are again based on the performance of these 149 participants who fin-



Fig. 5. Results for interval vs. 2-guess comparison. Top left: frequency with which the true dot count was
inside/between intervals/guesses. Bottom left: time taken to play the game. Half the users played the inter-
val game, then the 2 guesses game; the other half played the 2 guesses game, then the interval game. Circles
indicate medians and error bars are empirical 5th/95th percentiles of the population. Right: ratios of MSE
for bootstrapped populations of 2-guess and interval weighted median (top) and weighted mean (bottom)
estimators. Ratios below 1.0 indicate the 2-guess-weighted MSE is lower than the interval-weighted MSE.

ished with points, ensuring that they were properly incentivized by the scoring rules
throughout the game.

The results of the interval comparison game are presented in Figure 5. In the top left,
we see that the two scoring rules were calibrated equally (poorly). If intervals/guesses
were properly calibrated, these distributions would both be Binomial distributions
with n = 10, p = 0.5 (here p is the width of the requested interval). The estimated prob-
abilities of being inside/between the interval/guesses were p

int

= 0.395 and p2g = 0.377,
with a test for a difference between these two parameters is not statistically signifi-
cant (two-sided p-value 0.5422). We conclude that participants were spreading out their
guesses very similar to a [25%,75%] confidence interval, as predicted theoretically for
symmetric log-concave belief distributions, but still exhibited the typical overconfi-
dence common in confidence interval elicitation [Keren 1991].

Another question we were interested in was whether participants took significantly
longer time to respond to the interval scoring rule than the 2-guesses scoring rule.
In the bottom left panel of Figure 5, we see the time spent per image, including the
tutorial images. We see that the interval scoring rule tutorial instructions took users
slightly longer to process, but overall response times were equivalent.

Lastly, in the right panel we see the ratio of mean squared errors for a population of
estimators bootstrapped from the 2-guess responses and from the interval responses.
We see that the 2-guess scoring rule appears to generate lower error weighted median
estimators than the interval scoring rule, but the differences are not significant under
a one-sided paired ratio t-test (p = 0.1011 for median, p = 0.141 for mean). The “integer
constraint” for low dot counts (discussed earlier) impacts both “2-response” median
estimators equally, so all dot counts are considered.

In summary, we observe that the multiple guesses scoring rule is an empirically
performative approach to eliciting uncertainty for weighted wisdom of the crowd ag-
gregations, as performative as the interval scoring rule. We observe that individuals
responded to our guessing game as if their belief distributions were largely symmetric,
and the 2-guesses scoring rule elicited responses very similar to the interval scoring



rule configured for [25%,75%] percentiles, as predicted by our theoretical analysis un-
der symmetric log-concave belief distributions.

5. CONCLUSIONS
It is well known that aggregate predictions from large crowds can rival predictions
by experts, but crowds are generally heterogeneous in their expertise for any given
task at hand. In this paper we have developed and evaluated a new theory of how
this heterogeneous “uncertainty of the crowd” can be elicited and utilized to assemble
more efficient predictions. Our investigation involved rewarding users according to the
multiple guesses scoring rule that scores users in proportion to the accuracy of their
closest of several simultaneous guesses. We have shown that by simply weighting in-
dividuals based on properties of their multiple guesses, estimation error can be signif-
icantly reduced for both mean and median aggregation. By providing both theoretical
justifications and empirical evaluations, we contribute a novel technique for harness-
ing heterogeneous crowd certainty in real world crowd estimation tasks. Lastly, our
multiple-guesses elicitation and weighting strategy suggests compelling extensions to
existing crowd inference techniques, and we leave research into extensions such as
learning latent reputations for confidence reporting [Dekel and Shamir 2009], using
multiple guesses in a competitive game [Lichtendahl Jr et al. 2013], or modifying the
Bayesian Truth Serum mechanism [Prelec 2004] all as future work.
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