#### The Wisdom of Multiple Guesses

Johan Ugander, Microsoft Research Joint work with Ryan Drapeau and Carlos Guestrin, University of Washington

ACM EC'15 June 19, 2015



#### Wisdom of Crowds



Francis Galton at a country fair in 1907:

- 787 people guessing the weight of ox
- Median of guesses was 1207 lbs
- True weight was 1198 lbs

# Heterogeneous Wisdom of Crowds



Francis Galton at a country fair in 1907:

- 787 people guessing the weight of ox
- Median of guesses was 1207 lbs
- True weight was 1198 lbs

#### This talk:

- Heterogeneously uncertain crowds
- How can/should we elicit uncertainty?
- How can/should use use uncertainty?

Related: [Jose et al. 2013, Budescu and Chen 2014, Goldstein et al. 2014, Davis-Stober et al. 2014]

### Aggregation with uncertainty



Tuesday, April 21, 2015 10:12am

#### California's Drought

Californians would be better off on average if all final users in the state paid the same price for water — adjusted for quality, place and time — even if, as a result, some food prices rose sharply and some farms failed.

#### Responses

panel



#### Responses weighted by each expert's confidence



#### Vote Confidence



#### Premise:

- Individuals have belief distributions
- Possess different information/data

[Wallsten et al. '97, Vul-Pashler '08]

[Frongillo et al. '15]



#### Premise:

- Individuals have belief distributions
- Possess different information/data

[Wallsten et al. '97, Vul-Pashler '08]

[Frongillo et al. '15]





#### Premise:

Individuals have belief distributions

[Wallsten et al. '97, Vul-Pashler '08]

Possess different information/data

[Frongillo et al. '15]







#### Premise:

Individuals have belief distributions

[Wallsten et al. '97, Vul-Pashler '08]

Possess different information/data

[Frongillo et al. '15]





Independent, no social interference

[Lorenz et al. '11, Das et al. '13]



#### Measures of uncertainty

#### Possible approaches:

- Variance, standard deviation
- Interquantile ranges: [5%, 95%], [25%, 75%]
- Many others measures of dispersion (MAD, etc.)





### Measures of uncertainty

#### Possible approaches:

- Variance, standard deviation
- Interquantile ranges: [5%, 95%], [25%, 75%]
- Many others measures of dispersion (MAD, etc.)

What's "useful" for crowd aggregation?



Best aggregation strategy depends on shape of belief distributions.

#### Weighted mean:

MLE if people's guesses are drawn from  $X_i \sim Normal(\mu,\sigma_i^2)$ 

$$\hat{\mu}_1 = \frac{1}{\sum_{j=1}^n \frac{1}{\sigma_i^2}} \sum_{i=1}^n \frac{x_i}{\sigma_i^2}$$

#### Weighted median:

MLE if people's guesses are drawn from  $X_i \sim \text{Laplace}(\mu,\sigma_i^2)$ 

$$\hat{\mu}_2 = \operatorname{argmin}_m \sum_{i=1}^m \frac{1}{\sigma_i} |x_i - m|$$

Best aggregation strategy depends on shape of belief distributions.

#### Weighted mean:

MLE if people's guesses are drawn from  $X_i \sim Normal(\mu,\sigma_i^2)$ 

$$\hat{\mu}_1 = \frac{1}{\sum_{j=1}^n \frac{1}{\sigma_j^2}} \sum_{i=1}^n \frac{x_i}{\sigma_i^2}$$

#### Weighted median:

MLE if people's guesses are drawn from  $X_i \sim \text{Laplace}(\mu,\sigma_i^2)$ 

$$\hat{\mu}_2 = \operatorname{argmin}_m \sum_{i=1}^n \frac{1}{\sigma_i} |x_i - m|$$

Galton: means give "voting power to cranks in proportion to their crankiness".

Aggregators want var/std. What if we have confidence intervals?

Aggregators want var/std. What if we have confidence intervals?

<u>Proposition.</u> For any X belonging to a location-scale family **F**, any interquantile range between fixed quantiles p and q is proportional to the standard deviation,

$$IQR(X; p, q) = c_F(p, q)\sqrt{Var(X)}$$

with a constant that depends only on F for all X.

Aggregators want var/std. What if we have confidence intervals?

<u>Proposition.</u> For any X belonging to a location-scale family **F**, any interquantile range between fixed quantiles p and q is proportional to the standard deviation,

$$IQR(X; p, q) = c_F(p, q)\sqrt{Var(X)}$$

with a constant that depends only on F for all X.



Height of the Space Needle, m

Aggregators want var/std. What if we have confidence intervals?

<u>Proposition.</u> For any X belonging to a location-scale family **F**, any interquantile range between fixed quantiles p and q is proportional to the standard deviation,

$$IQR(X; p, q) = c_F(p, q)\sqrt{Var(X)}$$

with a constant that depends only on F for all X.



Height of the Space Needle, m

Aggregators want var/std. What if we have confidence intervals?

<u>Proposition.</u> For any X belonging to a location-scale family **F**, any interquantile range between fixed quantiles p and q is proportional to the standard deviation,

$$IQR(X; p, q) = c_F(p, q)\sqrt{Var(X)}$$

with a constant that depends only on F for all X.

**Result:** Can aggregate using interquantile ranges  $\mathbf{u}_i$  instead of std  $\sigma_i$ :

$$\hat{\mu}_1 = \frac{1}{\sum_{j=1}^n \frac{1}{u_j^2}} \sum_{i=1}^n \frac{x_i}{u_i^2} \qquad \hat{\mu}_2 = \operatorname{argmin}_m \sum_{i=1}^n \frac{1}{u_i} |x_i - m|$$

Aggregators want var/std. What if we have confidence intervals?

<u>Proposition.</u> For any X belonging to a location-scale family **F**, any interquantile range between fixed quantiles p and q is proportional to the standard deviation,

$$IQR(X; p, q) = c_F(p, q)\sqrt{Var(X)}$$

with a constant that depends only on F for all X.

p=0.25, q=0.75Normal  $c_F = 1.349$ Laplace  $c_F = 1.386$ 

**Result:** Can aggregate using interquantile ranges  $\mathbf{u}_i$  instead of std  $\sigma_i$ :

$$\hat{\mu}_1 = \frac{1}{\sum_{j=1}^n \frac{1}{u_j^2}} \sum_{i=1}^n \frac{x_i}{u_i^2} \qquad \hat{\mu}_2 = \operatorname{argmin}_m \sum_{i=1}^n \frac{1}{u_i} |x_i - m|$$

### Eliciting what we can use

We can use std or interquantile range.

What can we **elicit**? Can we incentivize people to honestly state their uncertainty?

Yes, with **scoring rules** that incentivize honest responses from expected utility maximizers.

[Brier '50; Savage '71]



### Eliciting what we can use

We can use std or interquantile range.

What can we **elicit**? Can we incentivize people to honestly state their uncertainty?

Yes, with **scoring rules** that incentivize honest responses from expected utility maximizers.

[Brier '50; Savage '71]

Other angles: competitive games, reputations, "Bayesian Truth Serum"



# Eliciting uncertainty

Known scoring rule for first and second moments m<sub>1</sub>, m<sub>2</sub>:

$$S_{\text{Brier}}(m_1, m_2; X) = (2m_1X - m_1^2) + (2m_2X^2 - m_2^2)$$

Known scoring rule for [25%, 75%] confidence interval:

$$S_{\text{interval}}(\ell, u; X) = (u - \ell) + 4(\ell - X)\mathbf{1}[X < \ell] + 4(X - u)\mathbf{1}[X > u]$$

## Eliciting uncertainty

Known scoring rule for first and second moments m<sub>1</sub>, m<sub>2</sub>:

$$S_{\text{Brier}}(m_1, m_2; X) = (2m_1X - m_1^2) + (2m_2X^2 - m_2^2)$$

Known scoring rule for [25%, 75%] confidence interval:

$$S_{\text{interval}}(\ell, u; X) = (u - \ell) + 4(\ell - X)\mathbf{1}[X < \ell] + 4(X - u)\mathbf{1}[X > u]$$



Just because a scoring rule makes people honest doesn't make it accurate.

We propose and analyze a multiple guesses scoring rule:

$$S_{MG,k}(\{r_1,\ldots,r_k\};X) = \min\{|X-r_1|,\ldots,|X-r_k|\}$$

"Make multiple guesses, you're rewarded based on closest guess"

Can think of as harnessing "dialectical crowds within" [Herzog-Hertwig '09]



We propose and analyze a multiple guesses scoring rule:

$$S_{MG,k}(\{r_1,\ldots,r_k\};X) = \min\{|X-r_1|,\ldots,|X-r_k|\}$$

"Make multiple guesses, you're rewarded based on closest guess"

Can think of as harnessing "dialectical crowds within" [Herzog-Hertwig '09]

Simplest case, two guesses scoring rule:

$$S_{MG,2}(\{r_1, r_2\}; X) = \min\{|X - r_1|, |X - r_2|\}$$

Intuitively, spread out your guesses:



$$S_{MG,2}(\{r_1, r_2\}; X) = \min\{|X - r_1|, |X - r_2|\}$$

Do guesses correspond to fixed quantiles p, q of belief distributions? If so, we can use the **inter-guess range** for weighted aggregation.



$$S_{MG,2}(\{r_1, r_2\}; X) = \min\{|X - r_1|, |X - r_2|\}$$

Do guesses correspond to fixed quantiles p, q of belief distributions? If so, we can use the **inter-guess range** for weighted aggregation.





$$S_{MG,2}(\{r_1, r_2\}; X) = \min\{|X - r_1|, |X - r_2|\}$$

Do guesses correspond to fixed quantiles p, q of belief distributions? If so, we can use the **inter-guess range** for weighted aggregation.



For what belief distributions do multiple guesses "work"?

**Proposition.** For any **log-concave** X the multiple guesses scoring rule is strictly proper for a set of quantiles  $r_1, ..., r_k$ .

<u>Proposition.</u> These quantiles are fixed for all **symmetric X** within the same **location-scale family**.





**Proposition.** For any **log-concave** X the multiple guesses scoring rule is strictly proper for a set of quantiles  $r_1, ..., r_k$ .

**Proof:** Corollary of log-concavity being a sufficient condition for uniqueness of k-medians for continuous 1D distributions.

Proven by the Mountain Pass Theorem: global min is the only local min!



**Proposition.** For any **log-concave** X the multiple guesses scoring rule is strictly proper for a set of quantiles  $r_1,...,r_k$ .

**Proof:** Corollary of log-concavity being a sufficient condition for uniqueness of k-medians for continuous 1D distributions.

Proven by the Mountain Pass Theorem: global min is the only local min!



Gradient descent finds the global min. Not crazy to think that agents with bounded rationality can do well.

#### So far:

- Uncertainty-weighted aggregation:
  - $\sigma_i^2$ -weighted mean,  $\sigma_i$ -weighted median
  - Assume location-scale family: can replace with interquantile ranges
- If symmetric log-concave: two guesses scoring rule elicits [25%, 75%]





# What if uncertainties are wrong?

Tukey contamination model: mixture of N(0,1) and N(0,b) beliefs.



# What if uncertainties are wrong?

• Tukey contamination model: mixture of N(0,1) and N(0,b) beliefs.





Need better methods to handle "certainty-cranks"

#### Experiments

- Is weighted aggregation better than unweighted?
- Better to use weighted mean or weighted median?
- Better to ask for Interval or to use multiple guesses?



Experiments on Amazon Mechanical Turk using a "Dot Guessing Game":

Players saw 30 images with variable numbers of dots



How many dots?

Experiments on Amazon Mechanical Turk using a "Dot Guessing Game":

- Players saw 30 images with variable numbers of dots
- Split in 3 rounds (random order): 1 guess, 2 guesses, 3 guesses



| How many dots? |  |
|----------------|--|
| How many dots? |  |
| How many dots? |  |

Experiments on Amazon Mechanical Turk using a "Dot Guessing Game":

- Players saw 30 images with variable numbers of dots
- Split in 3 rounds (random order): 1 guess, 2 guesses, 3 guesses



Pre-game tutorial, feedback about bonuses

- Dot counts ranged from 27 to 226.
- Very fewer dots (=very easy task): two guesses "gets in way"
- Rest: relative MSE was ~3x lower with 2-guess weighted aggregation

Weighted Median vs.
Median

Weighted Mean vs. Mean



- 3 Guesses: Symmetric?
  - Look at gap g<sub>3</sub>-g<sub>2</sub> vs. g<sub>2</sub>-g<sub>1</sub>
  - 48% of triplets perfectly symmetric

• 3-guess aggregation statistically indistinguishable from 2-guesses aggregation.



• Calibration experiment: 2-guesses rule vs. Interval rule for [25%, 75%]



 Interval-weighted aggregation statistically indistinguishable from 2guess weighted aggregation.

### Concluding thoughts

- Eliciting and utilizing uncertainty: smarter use of (smaller) crowds
- Better ways to elicit/utilize? Ask questions that are easy for humans to answer accurately, make algorithms do the heavy lifting.
- "Conditionally strictly proper scoring rules": strictly proper conditional on (hopefully reasonable) assumptions.
- Global min is only local min: interesting notion of efficiently computable.
- Shape of belief distribution family important.
- Methods for "certainty-cranks"
- Symmetric beliefs: not helpful to ask for more than 2 guesses.