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Abstract— The control of synthetic genetic regulatory net-
works is an emerging engineering challenge. In this study,
we propose a new synthetic genetic network that behaves as
a digital clock, producing square waveform oscillations. We
analyze two models of the network: a deterministic model based
on Michaelis-Menten kinetics, as well as a stochastic model
based on the Gillespie algorithm. Both models predict regions
of oscillatory behavior; the deterministic model provides insight
into the conditions required to produce the oscillating clock-
like behavior, while the stochastic model is truer to natural
dynamics. Intracellular stochasticity is seen to contribute phase
noise to the oscillator, and we propose improvements for
the network and discuss the conceptual foundations of these
improvements.

I. INTRODUCTION

Gene expression is often controlled by natural genetic

regulatory networks that govern the rates at which genes are

transcribed. Recent work has shown that synthetic versions

of genetic networks can be designed and built in living cells.

Mathematical modeling can provide accessible insight into

the dynamics behind the biology [1]. Applications for these

synthetic regulatory networks include intracellular decision-

making and computation.

Recent work in synthetic biology has produced biological

examples of a toggle switch and a ring oscillator. These two

components are the basis of our design for a digital clock.

The toggle switch memory unit [2] is a genetic network

where two genes repress each other (Fig. 1a) to achieve

bistability between two protein concentrations; when one

protein concentration is high, it holds the other low, and

vice versa. The repressilator [3] is another genetic network,

where three genes repress each other in a ring (Fig. 1b),

which causes the three constituent protein concentrations to

oscillate in time, phase-shifted 120 degrees from each other.

These two genetic networks are examples of basic building

blocks for molecular computing at the protein level.

The network we have designed consists of two toggle

switches that are cross-wired to repress each other (Fig.

1c), and we call the network the togglator. Each of the four

genes in the network is repressed by two other genes. This

is achieved through a combinatorial (NOR gate) promoter

site [4], a region upstream of the gene featuring two binding

sites that proteins can occupy to inhibit transcription.
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Fig. 1. Genetic regulatory network schematics. (a) The toggle switch
memory unit, (b) the repressilator, and (c) our proposed digital clock, the
togglator. It consists of two toggle switches modules, cross-wired to repress
each other.

The concentrations of the constituent biomolecules in

the network form data streams analogous to the voltage

levels in an electronic circuit. For our network, the periodic

oscillating concentrations of the four output proteins act as

our proposed digital clock. The aim of molecular computing

is to perform logical operations using these concentrations as

inputs and outputs. In electrical computing, clocks are used

to coordinate the actions of two or more circuits, and our

clock aims to perform this task for molecular circuits.

For our network, mathematical modeling predicts that the

concentrations of each of the four proteins in the network will

oscillate in a square fashion. These square oscillations are

generated such that each constituent switch module provides

two clocks, which are phase-shifted 180 degrees from each

other, serving as logical inverses. The two switch modules are

phase-shifted 90 degrees from each other, effectively offering

four square clocks spaced evenly across the phase space.

The period of an imperfect square waveform can be di-

vided into four components, two stationary and two transition
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periods. For perfect square waves, the transition periods have

length zero. The speed of the inter-toggle dynamics govern

the length of the stationary periods of the waveform, while

the intra-toggle dynamics decide the length of the transition

periods. Variation in the length of the stationary periods can

be viewed as phase noise for the oscillations, and the cause

of this is discussed. Our new design offers the possibility

of adjusting the period of the oscillation through a choice of

proteins used in a physical implementation. The possibility of

further design control is discussed in connection with other

regulatory mechanisms.

II. DETERMINISTIC MODELING

Genetic networks can be modeled deterministically as a

system of non-linear ordinary differential equations using

Hill functions, a modified version of Michaelis-Menten ki-

netics [5]. This deterministic model allows for analysis using

mathematical tools from traditional non-linear dynamics. It is

well known that intracellular stochasticity plays an important

role in genetic network dynamics [6], and a stochastic model

of the network will be discussed in a following section.

Transcriptional regulation of a gene Z by proteins X and

Y is modeled as:

Ż = α0z + αzG(X, Y ) − βZ, (1)

where αz is the regulatable transcription rate, the rate of

protein production controlled by transcriptional regulation,

while α0z is the basal transcription rate, the leakage that

cannot be controlled. β is the protein decay rate.

The function G(X, Y ) is the Hill OR-gate function de-

scribing how the transcription factors, here proteins X and

Y , bind competitively to the DNA (for deterministic mod-

eling, non-competitive and competitive binding show the

same qualitative results [4]). The Hill OR-gate function is

formed as the sum of two regulation functions: G(X, Y ) =
f(X, Y ) + f(Y, X). Here, both regulation functions model

repression, which is expressed as:

f(X, Y ) = 1/(1 + (X/Kxz)
2 + (Y/Kyz)

2). (2)

The Hill function describes the ratios of transcription factor

to threshold parameters (Kij) as a multivariate sigmoidal

function with values between 0 and 1. The Hill function

can be derived from equations describing the chemistry of

transcription factor binding. For simplicity, the state variables

X and Y can be scaled so that the threshold parameters are

1.

With these methods, the togglator genetic network is now

modeled as:

Ȧ = α0 + α(2/(1 + B2 + D2)) − βA (3)

Ḃ = α0 + α(2/(1 + A2 + C2)) − βB (4)

Ċ = α0 + α(2/(1 + A2 + D2)) − βC (5)

Ḋ = α0 + α(2/(1 + B2 + C2)) − βD, (6)

where A, B, C, and D are the concentrations of the four

proteins of the network, recalling that A-B and C-D form
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Fig. 2. Results for the deterministic model of the network. (a) A 2D
schematic illustrating the qualitative behavior of the 4D system, featuring a
stable limit cycle and equilibrium point, separated by an unstable limit cycle.
(b) Realization leading to the equilibrium point, and (c) the limit cycle.
Both figures show all four protein concentrations, where A(t) is green,
B(t) pink, C(t) blue, and D(t) red. The parameters values (α = 130,
α0 = 130 · 10−3) are taken from Elowitz’s model of the repressilator [3],
while β = 1 for simplicity.

switch modules. Here, symmetry of the parameters α0 and

α across switch components has been assumed.

The dynamic behavior of the 4-dimensional system can be

qualitatively understood with a two-dimensional schematic

representation, seen in Fig. 2a. For most realistic parameter

values, the system has two basins of attraction, one leading

to a stable limit cycle describing the expected oscillations,

and one leading to a stable equilibrium point. The separatrix

between the two basins is an unstable limit cycle. In order

to reach the oscillating basin, the protein concentrations

must be initially strongly imbalanced; the equilibrium basin

is reached as a result of an initially gridlocked regulatory

network. Oscillatory and equilibrium realizations are shown

in Fig. 2 b and c.

We will now show that there is exactly one equilibrium

concentration at which the proteins stabilize for a given set

of parameter values α and α0, and that this equilibrium point

is a stable fixed point for the system. We find this point by

setting Ȧ = Ḃ = Ċ = Ḋ = 0 and A = B = C = D = x,

for which the system reduces to the equation:

0 = α0 + α(2/(1 + 2x2)) − x,
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Transcription Translation & Decay Promoter region Parameters

Da+00

k1
−−→ Da+00 + Ma Ma

k2
−−→ Ma + Pa Da+00 + Pb

k5
−−→ Da+b0 Da+b0

k6
−−→ Pb + Da+00 k1 = 0.5 k5 = 1

Da+b0
γ·k1
−−−→ Da+b0 + Ma Da+00 + Pd

k5
−−→ Da+0d Da+0d

k6
−−→ Pd + Da+00 k2 = 0.167 k6 = 9

Da+0d
γ·k1
−−−→ Da+0d + Ma Pa

k3
−−→ ∅ Da+0d + Pb

k5
−−→ Da+bd Da+bd

k7
−−→ Pb + Da+0d k3 =ln(2)/120 k7 = 224

Da+bd
γ·k1
−−−→ Da+bd + Ma Ma

k4
−−→ ∅ Da+b0 + Pd

k5
−−→ Da+bd Da+bd

k7
−−→ Pd + Da+b0 k4 =ln(2)/600 γ = 0.001

TABLE I

THE SYSTEM OF CHEMICAL REACTIONS UNDERLYING THE STOCHASTIC MODEL OF THE NETWORK. Pz AND Mz ARE THE PROTEIN AND MRNA FOR

GENE Z . Dz+xy IS THE DNA FOR GENE Z , WITH PROTEINS X AND Y BOUND, WHILE Dz+0y IS DNA FOR GENE Z WITH ONLY PROTEIN Y BOUND.

FOR THIS STUDY, PARAMETER VALUES WERE AGAIN CHOSEN FROM SIMULATIONS OF THE ELOWITZ REPRESSILATOR [3], CHOSEN TO AGREE WITH

THE PARAMETER VALUES FOR THE DETERMINISTIC MODEL. NOTICE HOW COOPERATIVITY IS OBTAINED THROUGH THE HEIGHTENED REACTION

RATE FOR THE UNBINDING OF THE SECOND-OCCUPIED (k7 COMPARED TO k6) OPERATOR SITE.
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Fig. 3. Parametric study of the deterministic model. The parameter space
(α×α0/α) illustrates how the oscillatory basin exists only in certain regions
of parameter space. Blue indicates the presence of the equilibrium basin,
pink indicates the presence of both the oscillatory and equilibrium basin.
The black point indicates the parameter values chosen from the Elowitz
model and used in Fig. 2c.

which can be rewritten as the third order polynomial:

0 = x3 − α0x
2 + (1/2)x − (2α + α0)/2. (7)

Using a computer based analytic solver such as Maple [7],

this polynomial can be shown to have only one real root for

positive real parameters, corresponding to the one equilib-

rium concentration. The fixed point is proven to be stable by

examining the eigenvalues of the Jacobian linearized around

the fixed point. The eigenvalues are found to be:

λk = {−1, 2y − 1,−y − 1 + iy,−y − 1 − iy},

where y = ((−2αx)/(1 + 2x2)). Because ℜ(λk) < 0 for all

α ∈ R
+, the fixed point is stable.

We will now explore the behavior of the system when we

vary the two parameters α, the regulatable transcription rate,

and α0, the basal transcription rate. Intuitively, a high basal

transcription rate α0 would make the regulatory mechanisms

ineffective. Likewise, very low values of α could disable

the regulatory mechanism. Fig. 3a maps the parameter space

(α×α0/α) to the possible behaviors of the system, showing

that a bifurcation occurs.

In agreement with our intuitive understanding from bi-

ology, high basal transcription rates cause the stable and

unstable limit cycles to annihilate each other, leaving only

the equilibrium behavior. Moving in the other direction, low

basal transcription rates result in the unstable limit cycle

contracting in on the stable fixed point, and for exceptionally

low values of α0 the equilibrium basin becomes miniscule.

Before presenting the stochastic model, the expected con-

sequences of adding noise to the system will be discussed.

One expected consequence is that small equilibrium basins

will become highly unstable; trajectories in the equilibrium

basin will be easily ejected by noise, crossing the separatrix

and entering the oscillatory basin. Trajectories in the oscilla-

tory basin may cross into the equilibrium basin, but this will

be difficult for small equilibrium basins, and can be expected

to occur only for short periods before being returned. As will

be discussed later, this equilibrium basin can be identified

as the source of phase noise in the stochastic model of the

network.

III. STOCHASTIC MODELING

Genetic networks can be modeled more realistically as a

biochemical system using Gillespie’s stochastic simulation

algorithm [8]. The Gillespie algorithm can be derived from

the chemical Master equation, and simulates the behavior of

a system of chemical species probabilistically on a reaction-

by-reaction basis. Essentially, molecular collisions are mod-

eled to occur at times drawn from an exponential distribution

characterized by the total concentration of molecules, and

a second random number determines what reaction occurs

based on the reaction rates of of the system. For more

information, reference [8] provides an excellent introduction

with many examples. For genetic networks, abstract chemical

species such as ‘protein’ and ‘DNA’ can be used to avoid

modeling the system on a molecular level.

For the Gillespie algorithm, the togglator network is

modeled with the system of chemical reactions seen in Table

1. The table presents only those reactions directly governing

one of the four genes. The reactions for the remaining

three genes are constructed symmetrically, for a total of 60

reactions.
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Fig. 4. Results for the stochastic model of the network. (a) A repression cascade with length 3, used to delay the inter-toggle communication. (b)
Realization of the non-delayed system, and (c) the delayed system. The top half of each figure shows the concentrations of proteins A (green solid line)
and B (pink dashed line), while the bottom half shows the concentrations of proteins C (blue solid line) and D (red dashed line). (d) A histogram of the
period length of each oscillation in the non-delayed system, and (e) delayed system. The periods are identified using the Viterbi algorithm [10] [11], where
the most likely sequence of transitions is identified for a Hidden Markov model with 2 states corresponding to high and low Gaussian behavior.

With symmetries, the system of reactions contain 7 pa-

rameters. The γ parameter for our stochastic model is the

ratio of basal to regulatable transcription, corresponding to

α0/α from our deterministic model. The dynamics for the

deterministic model are summarized by the parameters α
and α0, where the stochastic model is parameterized in

greater detail by the reaction rates k1−6. See reference [3]

for a more detailed explanation. No extensive parametric

study was conducted for the stochastic model, though we

confirmed that the chosen values were not anomalous.

As was discussed previously, the performance of the net-

work is improved dramatically by separating the time scales

of the inter-switch and intra-switch repression pathways. This

separation of times scales is difficult to achieve with only

transcriptional regulation. The method used in this study

has been to introduce a delay to the inter-switch pathways

by replacing the direct repression pathways with repression

cascades (Fig. 4a), a chain of genes repressing each other

[9]. These cascades effectively serve as a delay function by

routing the signal in a circumlocutory fashion.

Stochastic simulations for both the delayed and non-

delayed networks were conducted, and a realization from

the non-delayed network can be seen in Fig. 4b, while

realizations from the delayed network featuring cascade

schemes can been seen in Fig 4c.

The cascades introduce a delay in the inter-switch commu-

nication, which determines the length of the stationary period

of the square waveform. This delayed network has a much

clearer clock, where the concentrations are distinctly high or

low. The drastic improvements brought by the cascade delay

schemes comes at the cost of an equally drastic increase in

biological complexity. With length 3 cascades added for each

inter-switch pathway, the system requirements jump from 4

to 12 proteins. Other methods of delay will be discussed in

the following section.

A notable advantage of the cascade delayed network is that

it exhibits reduced phase noise, the variation in how long

each switch stays ON. Understanding this requires insight

into both the stochastic and deterministic models presented

in this study. When the time scales are comparable, random

pulses in a given protein concentration are comparable to the

total concentration of that protein, since it has not had the

time to fully rise. This pushes the system into the equilibrium

basin seen in the deterministic model, where it will remain

until a new random pulse in concentration ejects it back into

the oscillatory basin. Introducing delay allows the switch to

stabilize at a significantly higher level, drowning out random

pulses much more effectively.

The amount of time spent in the equilibrium basin can be

viewed as a stochastic variable that adds to the period of the

oscillations, an effect that can summarized as phase noise.

Histograms of the periods of oscillation for the regular and

delayed networks can be seen in Fig. 4d-e. Comparing the

two histograms, the period of the delayed network clearly

has a narrower distribution.

IV. FUTURE WORK AND CONCLUSIONS

In this study, we present designs for an intracellular digital

clock in the form of a genetic regulatory network, while

providing analysis of both a deterministic and stochastic

model of the network. Stochastic modeling reveals that the

network is susceptible to large amounts of phase noise,

and this problem is addressed by adding cascade delay

mechanisms to drown out erroneous concentration spikes.

Transcriptional regulation is the only regulatory mecha-

nism considered in this study, and it is important to note that

further improvements can be expected if different regulatory

mechanisms are harnessed to extend the separation of time

scales. Two techniques worth exploring are phosphorylation

cascades [12] and ubiquitin-dependent protein degradation

[13].
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By designing the inter- and intra-toggle pathways with

different regulatory techniques, the potential for time scale

separation is much larger. The cascade delay mechanism

in this study should only be considered as a proof of

concept. Other mechanisms may offer means of producing

behavior in line with the delayed model in this study without

the added complexity of the cascade. Once a solution is

found that separates inter- and intra-toggle time scales and

avoids introducing immense complexity, construction and

verification in vivo would be the next obvious step.
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